File: uncertainquantity.py

package info (click to toggle)
python-quantities 0.16.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 864 kB
  • sloc: python: 8,006; makefile: 72; sh: 3
file content (286 lines) | stat: -rw-r--r-- 9,550 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
"""
"""

import numpy as np
import warnings

from . import markup, QuantitiesDeprecationWarning
from .quantity import Quantity, scale_other_units
from .registry import unit_registry
from .decorators import with_doc

class UncertainQuantity(Quantity):

    # TODO: what is an appropriate value?
    __array_priority__ = 22

    def __new__(cls, data, units='', uncertainty=None, dtype='d', copy=None):
        if copy is not None:
            warnings.warn(("The 'copy' argument in UncertainQuantity is deprecated and will be removed in the future. "
                           "The argument has no effect since quantities-0.16.0 (to aid numpy-2.0 support)."),
                           QuantitiesDeprecationWarning, stacklevel=2)
        ret = Quantity.__new__(cls, data, units, dtype)
        # _uncertainty initialized to be dimensionless by __array_finalize__:
        ret._uncertainty._dimensionality = ret._dimensionality

        if uncertainty is not None:
            ret.uncertainty = Quantity(uncertainty, ret._dimensionality)
        elif isinstance(data, UncertainQuantity):
            is_copy = id(data) == id(ret)
            if is_copy or ret._dimensionality != uncertainty._dimensionality:
                uncertainty = data.uncertainty.rescale(ret.units)
            ret.uncertainty = uncertainty

        return ret

    @Quantity.units.setter  # type: ignore[attr-defined]
    def units(self, units):
        super()._set_units(units)
        self.uncertainty.units = self._dimensionality

    @property
    def _reference(self):
        ret = super()._reference.view(UncertainQuantity)
        ret.uncertainty = self.uncertainty._reference
        return ret

    @property
    def simplified(self):
        ret = super().simplified.view(UncertainQuantity)
        ret.uncertainty = self.uncertainty.simplified
        return ret

    @property
    def uncertainty(self):
        return self._uncertainty
    @uncertainty.setter
    def uncertainty(self, uncertainty):
        if not isinstance(uncertainty, Quantity):
            uncertainty = Quantity(uncertainty)
        try:
            assert self.shape == uncertainty.shape
        except AssertionError:
            raise ValueError('data and uncertainty must have identical shape')
        if uncertainty._dimensionality != self._dimensionality:
            uncertainty = uncertainty.rescale(self._dimensionality)
        self._uncertainty = uncertainty

    @property
    def relative_uncertainty(self):
        return self.uncertainty.magnitude/self.magnitude

    @with_doc(Quantity.rescale, use_header=False)
    def rescale(self, units, dtype=None):
        cls = UncertainQuantity
        ret = super(cls, self).rescale(units, dtype=dtype).view(cls)
        ret.uncertainty = self.uncertainty.rescale(units, dtype=dtype)
        return ret

    def __array_finalize__(self, obj):
        Quantity.__array_finalize__(self, obj)
        self._uncertainty = getattr(
            obj,
            'uncertainty',
            Quantity(
                np.zeros(self.shape, self.dtype),
                self._dimensionality,
            )
        )

    @with_doc(Quantity.__add__, use_header=False)
    @scale_other_units
    def __add__(self, other):
        res = super().__add__(other)
        u = (self.uncertainty**2+other.uncertainty**2)**0.5
        return UncertainQuantity(res, uncertainty=u)

    @with_doc(Quantity.__radd__, use_header=False)
    @scale_other_units
    def __radd__(self, other):
        return self.__add__(other)

    @with_doc(Quantity.__sub__, use_header=False)
    @scale_other_units
    def __sub__(self, other):
        res = super().__sub__(other)
        u = (self.uncertainty**2+other.uncertainty**2)**0.5
        return UncertainQuantity(res, uncertainty=u)

    @with_doc(Quantity.__rsub__, use_header=False)
    @scale_other_units
    def __rsub__(self, other):
        if not isinstance(other, UncertainQuantity):
            other = UncertainQuantity(other)

        return UncertainQuantity.__sub__(other, self)

    @with_doc(Quantity.__mul__, use_header=False)
    def __mul__(self, other):
        res = super().__mul__(other)
        try:
            sru = self.relative_uncertainty
            oru = other.relative_uncertainty
            ru = (sru**2+oru**2)**0.5
            u = res.view(Quantity) * ru
        except AttributeError:
            other = np.asanyarray(other)
            u = (self.uncertainty**2*other**2)**0.5

        res._uncertainty = u
        return res

    @with_doc(Quantity.__rmul__, use_header=False)
    def __rmul__(self, other):
        return self.__mul__(other)

    def __neg__(self):
        return self*-1

    @with_doc(Quantity.__truediv__, use_header=False)
    def __truediv__(self, other):
        res = super().__truediv__(other)
        try:
            sru = self.relative_uncertainty
            oru = other.relative_uncertainty
            ru = (sru**2+oru**2)**0.5
            u = res.view(Quantity) * ru
        except AttributeError:
            other = np.asanyarray(other)
            u = (self.uncertainty**2/other**2)**0.5

        res._uncertainty = u
        return res

    @with_doc(Quantity.__rtruediv__, use_header=False)
    def __rtruediv__(self, other):
        temp = UncertainQuantity(
            1/self.magnitude, self.dimensionality**-1,
            self.relative_uncertainty/self.magnitude
        )
        return other * temp

    @with_doc(Quantity.__pow__, use_header=False)
    def __pow__(self, other):
        res = super().__pow__(other)
        res.uncertainty = res.view(Quantity) * other * self.relative_uncertainty
        return res

    @with_doc(Quantity.__getitem__, use_header=False)
    def __getitem__(self, key):
        return UncertainQuantity(
            self.magnitude[key],
            self._dimensionality,
            self.uncertainty[key]
        )

    @with_doc(Quantity.__repr__, use_header=False)
    def __repr__(self):
        return '%s(%s, %s, %s)'%(
            self.__class__.__name__,
            repr(self.magnitude),
            self.dimensionality.string,
            repr(self.uncertainty.magnitude)
        )

    @with_doc(Quantity.__str__, use_header=False)
    def __str__(self):
        if markup.config.use_unicode:
            dims = self.dimensionality.unicode
        else:
            dims = self.dimensionality.string
        s = '%s %s\n+/-%s (1 sigma)'%(
            str(self.magnitude),
            dims,
            str(self.uncertainty)
        )
        if markup.config.use_unicode:
            return s.replace('+/-', '±').replace(' sigma', 'σ')
        return s

    @with_doc(np.ndarray.sum)
    def sum(self, axis=None, dtype=None, out=None):
        return UncertainQuantity(
            self.magnitude.sum(axis, dtype, out),
            self.dimensionality,
            (np.sum(self.uncertainty.magnitude**2, axis))**0.5
        )

    @with_doc(np.nansum)
    def nansum(self, axis=None, dtype=None, out=None):
        return UncertainQuantity(
            np.nansum(self.magnitude, axis, dtype, out),
            self.dimensionality,
            (np.nansum(self.uncertainty.magnitude**2, axis))**0.5
        )

    @with_doc(np.ndarray.mean)
    def mean(self, axis=None, dtype=None, out=None):
        return UncertainQuantity(
            self.magnitude.mean(axis, dtype, out),
            self.dimensionality,
            ((1.0/np.size(self,axis))**2 * np.sum(self.uncertainty.magnitude**2, axis))**0.5
        )

    @with_doc(np.nanmean)
    def nanmean(self, axis=None, dtype=None, out=None):
        size = np.sum(~np.isnan(self),axis)
        return UncertainQuantity(
            np.nanmean(self.magnitude, axis, dtype, out),
            self.dimensionality,
            ((1.0/size)**2 * np.nansum(np.nan_to_num(self.uncertainty.magnitude)**2, axis))**0.5
        )

    @with_doc(np.sqrt)
    def sqrt(self, out=None):
        return self**0.5

    @with_doc(np.ndarray.max)
    def max(self, axis=None, out=None):
        idx = np.unravel_index(np.argmax(self.magnitude), self.shape)
        return self[idx]

    @with_doc(np.nanmax)
    def nanmax(self, axis=None, out=None):
        idx = np.unravel_index(np.nanargmax(self.magnitude), self.shape)
        return self[idx]

    @with_doc(np.ndarray.min)
    def min(self, axis=None, out=None):
        idx = np.unravel_index(np.argmin(self.magnitude), self.shape)
        return self[idx]

    @with_doc(np.nanmin)
    def nanmin(self, axis=None, out=None):
        idx = np.unravel_index(np.nanargmin(self.magnitude), self.shape)
        return self[idx]

    @with_doc(np.ndarray.argmin)
    def argmin(self,axis=None, out=None):
        return self.magnitude.argmin()

    @with_doc(np.ndarray.argmax)
    def argmax(self,axis=None, out=None):
        return self.magnitude.argmax()

    @with_doc(np.nanargmin)
    def nanargmin(self,axis=None, out=None):
        return np.nanargmin(self.magnitude)

    @with_doc(np.nanargmax)
    def nanargmax(self,axis=None, out=None):
        return np.nanargmax(self.magnitude)

    def __setstate__(self, state):
        ndarray_state = state[:-2]
        units, sigma = state[-2:]
        np.ndarray.__setstate__(self, ndarray_state)
        self._dimensionality = units
        self._uncertainty = sigma

    def __reduce__(self):
        """
        Return a tuple for pickling a Quantity.
        """
        reconstruct, reconstruct_args, state = super().__reduce__()
        state = state + (self._uncertainty,)
        return reconstruct, reconstruct_args, state