File: psychometric_function.py

package info (click to toggle)
python-questplus 2019.4-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 364 kB
  • sloc: python: 2,399; makefile: 14; sh: 8
file content (311 lines) | stat: -rw-r--r-- 10,977 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from typing import Union, Iterable
import numpy as np
import scipy.stats
import xarray as xr


def weibull(*,
            intensity: Union[float, Iterable[float]],
            threshold: Union[float, Iterable[float]],
            slope: Union[float, Iterable[float]] = 3.5,
            lower_asymptote: Union[float, Iterable[float]] = 0.01,
            lapse_rate: Union[float, Iterable[float]] = 0.01,
            scale: str = 'log10') -> xr.DataArray:
    """
    A Weibull psychometric function.

    Parameters
    ----------
    intensity
        Stimulus values on the abscissa, :math:`x`.

    threshold
        The threshold parameter, :math:`\\alpha`.

    slope
        The slope parameter, :math:`\\beta`.

    lower_asymptote
        The lower asymptote, :math:`\\gamma`, which is equivalent to the
        false-alarm rate in a yes-no task, or :math:`\\frac{1}{n}` in an
        :math:`n`-AFC task.

    lapse_rate
        The lapse rate, :math:`\\delta`. The upper asymptote of the psychometric
        function will be :math:`1-\\delta`.

    scale
        The scale of the stimulus parameters. Possible values are ``log10``,
        ``dB``, and ``linear``.

    Returns
    -------
    p
        The psychometric function evaluated at the specified intensities for
        all parameters combinations.

    Notes
    -----
    An appropriate parametrization of the function is chosen based on the
    `scale` keyword argument. Specifically, the following parametrizations
    are used:

        scale='linear'
            :math:`p = 1 - \delta - (1 - \gamma - \delta)\\, e^{-\\left (\\frac{x}{t} \\right )^\\beta}`

        scale='log10'
            :math:`p = 1 - \delta - (1 - \gamma - \delta)\\, e^{-10^{\\beta (x - t)}}`

        scale='dB':
            :math:`p = 1 - \delta - (1 - \gamma - \delta)\\, e^{-10^{\\frac{\\beta}{20} (x - t)}}`

    """
    intensity = np.atleast_1d(intensity)
    threshold = np.atleast_1d(threshold)
    slope = np.atleast_1d(slope)
    lower_asymptote = np.atleast_1d(lower_asymptote)
    lapse_rate = np.atleast_1d(lapse_rate)

    # Implementation using NumPy. Leave it here for reference.
    #
    # x, t, beta, gamma, delta = np.meshgrid(intensity,
    #                                        threshold,
    #                                        slope,
    #                                        lower_asymptote,
    #                                        lapse_rate,
    #                                        indexing='ij', sparse=True)

    x = xr.DataArray(data=intensity, dims=['intensity'],
                     coords=dict(intensity=intensity))
    t = xr.DataArray(data=threshold, dims=['threshold'],
                     coords=dict(threshold=threshold))
    beta = xr.DataArray(data=slope, dims=['slope'],
                        coords=dict(slope=slope))
    gamma = xr.DataArray(data=lower_asymptote, dims=['lower_asymptote'],
                         coords=dict(lower_asymptote=lower_asymptote))
    delta = xr.DataArray(data=lapse_rate, dims=['lapse_rate'],
                         coords=dict(lapse_rate=lapse_rate))
    assert np.atleast_1d(x.squeeze()).shape == np.atleast_1d(intensity).shape
    assert np.atleast_1d(t.squeeze()).shape == np.atleast_1d(threshold).shape
    assert np.atleast_1d(beta.squeeze()).shape == np.atleast_1d(slope).shape
    assert np.atleast_1d(gamma.squeeze()).shape == np.atleast_1d(lower_asymptote).shape
    assert np.atleast_1d(delta.squeeze()).shape == np.atleast_1d(lapse_rate).shape

    if scale == 'linear':
        p = 1 - delta - (1 - gamma - delta) * np.exp(-(x / t)**beta)
    elif scale == 'log10':
        p = 1 - delta - (1 - gamma - delta) * np.exp(-10 ** (beta * (x - t)))
    elif scale == 'dB':
        p = 1 - delta - (1 - gamma - delta) * np.exp(-10 ** (beta * (x - t) / 20))
    else:
        raise ValueError('Invalid scale specified.')

    return p


def csf(*,
        contrast: Union[float, Iterable[float]],
        spatial_freq: Union[float, Iterable[float]],
        temporal_freq: Union[float, Iterable[float]],
        c0: Union[float, Iterable[float]],
        cf: Union[float, Iterable[float]],
        cw: Union[float, Iterable[float]],
        min_thresh: Union[float, Iterable[float]],
        slope: Union[float, Iterable[float]] = 3.5,
        lower_asymptote: Union[float, Iterable[float]] = 0.01,
        lapse_rate: Union[float, Iterable[float]] = 0.01,
        scale: str = 'log10') -> np.ndarray:
    """
    The spatio-temporal contrast sensitivity function.

    Parameters
    ----------
    contrast
    spatial_freq
    temporal_freq
    c0
    cf
    cw
    min_thresh
    slope
    lower_asymptote
    lapse_rate
    scale

    Returns
    -------

    """
    contrast = np.atleast_1d(contrast)
    spatial_freq = np.atleast_1d(spatial_freq)
    temporal_freq = np.atleast_1d(temporal_freq)
    c0 = np.atleast_1d(c0)
    cf = np.atleast_1d(cf)
    cw = np.atleast_1d(cw)
    min_thresh = np.atleast_1d(min_thresh)
    slope = np.atleast_1d(slope)
    lower_asymptote = np.atleast_1d(lower_asymptote)
    lapse_rate = np.atleast_1d(lapse_rate)

    # Implementation using NumPy. Leave it here for reference.
    #
    # c, f, w, c0_, cf_, cw_, t, beta, gamma, delta = np.meshgrid(
    #     contrast, spatial_freq, temporal_freq, c0, cf, cw, min_thresh,
    #     slope, lower_asymptote, lapse_rate,
    #     indexing='ij', sparse=True)

    x = xr.DataArray(data=contrast, dims=['contrast'],
                     coords=dict(contrast=contrast))
    f = xr.DataArray(data=spatial_freq, dims=['spatial_freq'],
                     coords=dict(spatial_freq=spatial_freq))
    w = xr.DataArray(data=temporal_freq, dims=['temporal_freq'],
                     coords=dict(temporal_freq=temporal_freq))
    c0_ = xr.DataArray(data=c0, dims=['c0'],
                       coords=dict(c0=c0))
    cf_ = xr.DataArray(data=cf, dims=['cf'],
                       coords=dict(cf=cf))
    cw_ = xr.DataArray(data=cw, dims=['cw'],
                       coords=dict(cw=cw))
    min_t = xr.DataArray(data=min_thresh, dims=['min_thresh'],
                         coords=dict(min_thresh=min_thresh))
    beta = xr.DataArray(data=slope, dims=['slope'],
                        coords=dict(slope=slope))
    gamma = xr.DataArray(data=lower_asymptote, dims=['lower_asymptote'],
                         coords=dict(lower_asymptote=lower_asymptote))
    delta = xr.DataArray(data=lapse_rate, dims=['lapse_rate'],
                         coords=dict(lapse_rate=lapse_rate))

    t = np.maximum(min_t, c0_ + cf_ * f + cw_ * w)

    # p = weibull(intensity=contrast,
    #             threshold=threshold,
    #             slope=slope,
    #             lower_asymptote=lower_asymptote,
    #             lapse_rate=lapse_rate,
    #             scale=scale)

    if scale == 'linear':
        p = 1 - delta - (1 - gamma - delta) * np.exp(-(x / t)**beta)
    elif scale == 'log10':
        p = 1 - delta - (1 - gamma - delta) * np.exp(-10 ** (beta * (x - t)))
    elif scale == 'dB':
        p = 1 - delta - (1 - gamma - delta) * np.exp(-10 ** (beta * (x - t) / 20))
    else:
        raise ValueError('Invalid scale specified.')

    return p


def norm_cdf(*,
             intensity: Union[float, Iterable[float]],
             mean: Union[float, Iterable[float]],
             sd: Union[float, Iterable[float]],
             lower_asymptote: Union[float, Iterable[float]] = 0.01,
             lapse_rate: Union[float, Iterable[float]] = 0.01,
             scale: str = 'linear'):
    """
    The cumulate normal distribution.

    Parameters
    ----------
    intensity
    mean
    sd
    lower_asymptote
    lapse_rate
    scale

    Returns
    -------

    """
    if scale != 'linear':
        msg = ('Currently, only linear stimulus scaling is supported for this '
               'psychometric function.')
        raise ValueError(msg)

    intensity = np.atleast_1d(intensity)
    mean = np.atleast_1d(mean)
    sd = np.atleast_1d(sd)
    lower_asymptote = np.atleast_1d(lower_asymptote)
    lapse_rate = np.atleast_1d(lapse_rate)

    x = xr.DataArray(data=intensity, dims=['intensity'],
                     coords=dict(intensity=intensity))
    mu = xr.DataArray(data=mean, dims=['mean'],
                      coords=dict(mean=mean))
    sd_ = xr.DataArray(data=sd, dims=['sd'],
                       coords=dict(sd=sd))
    gamma = xr.DataArray(data=lower_asymptote, dims=['lower_asymptote'],
                         coords=dict(lower_asymptote=lower_asymptote))
    delta = xr.DataArray(data=lapse_rate, dims=['lapse_rate'],
                         coords=dict(lapse_rate=lapse_rate))

    # x, mu, sd_, delta = np.meshgrid(intensity,
    #                                 mean,
    #                                 sd,
    #                                 lapse_rate,
    #                                 indexing='ij', sparse=True)
    #
    # assert np.atleast_1d(intensity.squeeze()).shape == np.atleast_1d(intensity).shape
    # assert np.atleast_1d(x.squeeze()).shape == np.atleast_1d(intensity).shape
    # assert np.atleast_1d(sd_.squeeze()).shape == np.atleast_1d(sd).shape
    # assert np.atleast_1d(delta.squeeze()).shape == np.atleast_1d(lapse_rate).shape

    # p = delta + (1 - 2*delta) * scipy.stats.norm.cdf(x, mu, sd_)

    def _mu_func(x, mu, sd_, gamma, delta):
        norm = scipy.stats.norm(loc=mu, scale=sd_)
        return delta + (1 - gamma - delta) * norm.cdf(x)

    p = xr.apply_ufunc(_mu_func, x, mu, sd_, gamma, delta)
    return p


def norm_cdf_2(*,
               intensity: Union[float, Iterable[float]],
               mean: Union[float, Iterable[float]],
               sd: Union[float, Iterable[float]],
               lapse_rate: Union[float, Iterable[float]] = 0.01,
               scale: str = 'linear'):
    """
    The cumulative normal distribution with lapse rate equal to lower
    asymptote.

    Parameters
    ----------
    intensity
    mean
    sd
    lapse_rate
    scale

    Returns
    -------

    """
    if scale != 'linear':
        msg = ('Currently, only linear stimulus scaling is supported for this '
               'psychometric function.')
        raise ValueError(msg)

    intensity = np.atleast_1d(intensity)
    mean = np.atleast_1d(mean)
    sd = np.atleast_1d(sd)
    lapse_rate = np.atleast_1d(lapse_rate)

    x = xr.DataArray(data=intensity, dims=['intensity'],
                     coords=dict(intensity=intensity))
    mu = xr.DataArray(data=mean, dims=['mean'],
                      coords=dict(mean=mean))
    sd_ = xr.DataArray(data=sd, dims=['sd'],
                       coords=dict(sd=sd))
    delta = xr.DataArray(data=lapse_rate, dims=['lapse_rate'],
                         coords=dict(lapse_rate=lapse_rate))

    def _mu_func(x, mu, sd_, delta):
        norm = scipy.stats.norm(loc=mu, scale=sd_)
        return delta + (1 - 2*delta) * norm.cdf(x)

    p = xr.apply_ufunc(_mu_func, x, mu, sd_, delta)
    return p