1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
|
from typing import Optional, Sequence, Literal
from copy import deepcopy
import numpy as np
import xarray as xr
import json_tricks
from questplus import psychometric_function
class QuestPlus:
def __init__(
self,
*,
stim_domain: dict,
param_domain: dict,
outcome_domain: dict,
prior: Optional[dict] = None,
func: Literal["weibull", "csf", "norm_cdf", "norm_cdf_2", "thurstone_scaling"],
stim_scale: Optional[Literal["log10", "dB", "linear"]],
stim_selection_method: str = "min_entropy",
stim_selection_options: Optional[dict] = None,
param_estimation_method: str = "mean",
):
"""
A QUEST+ staircase procedure.
Parameters
----------
stim_domain
Specification of the stimulus domain: dictionary keys correspond to
the names of the stimulus dimensions, and values describe the
respective possible stimulus values (e.g., intensities, contrasts,
or orientations).
param_domain
Specification of the parameter domain: dictionary keys correspond
to the names of the parameter dimensions, and values describe the
respective possible parameter values (e.g., threshold, slope,
lapse rate.
outcome_domain
Specification of the outcome domain: dictionary keys correspond
to the names of the outcome dimensions, and values describe the
respective possible outcome values (e.g., "Yes", "No", "Correct",
"Incorrect"). This argument typically describes the responses a
participant can provide.
prior
A-priori probabilities of parameter values.
func
The psychometric function whose parameters to estimate.
stim_scale
The scale on which the stimuli are provided. Has no effect for the
Thurstonian scaling function.
stim_selection_method
How to select the next stimulus. `min_entropy` picks the stimulus
that will minimize the expected entropy. `min_n_entropy` randomly
selects a stimulus from the set of stimuli that will yield the `n`
smallest entropies. `n` has to be specified via the
`stim_selection_options` keyword argument.
stim_selection_options
Use this argument to specify options for the stimulus selection
method specified via `stim_selection_method`. Currently, this can
be used to specify the number of `n` stimuli that will yield the
`n` smallest entropies if `stim_selection_method=min_n_entropy`,
and `max_consecutive_reps`, the number of times the same stimulus
can be presented consecutively. A random number generator seed
may be passed via `random_seed=12345`.
param_estimation_method
The method to use when deriving the final parameter estimate.
Possible values are `mean` (mean of each parameter, weighted by the
posterior probabilities) and `mode` (the parameters at the peak of
the posterior distribution).
"""
if func == "thurstone_scaling" and stim_scale is not None:
raise ValueError(
"The Thurstonian scaling function cannot be used with "
"a stim_scale parameter."
)
self.func = func
self.stim_scale = stim_scale
self.stim_domain = self._ensure_ndarray(stim_domain)
self.param_domain = self._ensure_ndarray(param_domain)
self.outcome_domain = self._ensure_ndarray(outcome_domain)
self.prior = self._gen_prior(prior=prior)
self.posterior = deepcopy(self.prior)
self.likelihoods = self._gen_likelihoods()
self.stim_selection = stim_selection_method
if self.stim_selection == "min_n_entropy":
from ._constants import (
DEFAULT_N,
DEFAULT_RANDOM_SEED,
DEFAULT_MAX_CONSECUTIVE_REPS,
)
if stim_selection_options is None:
self.stim_selection_options = dict(
n=DEFAULT_N,
max_consecutive_reps=DEFAULT_MAX_CONSECUTIVE_REPS,
random_seed=DEFAULT_RANDOM_SEED,
)
else:
self.stim_selection_options = stim_selection_options.copy()
if "n" not in stim_selection_options:
self.stim_selection_options["n"] = DEFAULT_N
if "max_consecutive_reps" not in stim_selection_options:
self.stim_selection_options[
"max_consecutive_reps"
] = DEFAULT_MAX_CONSECUTIVE_REPS
if "random_seed" not in stim_selection_options:
self.stim_selection_options["random_seed"] = DEFAULT_RANDOM_SEED
del DEFAULT_N, DEFAULT_MAX_CONSECUTIVE_REPS, DEFAULT_RANDOM_SEED
seed = self.stim_selection_options["random_seed"]
self._rng = np.random.RandomState(seed=seed)
del seed
else:
self.stim_selection_options = stim_selection_options
self._rng = None
self.param_estimation_method = param_estimation_method
self.resp_history = list()
self.stim_history = list()
self.entropy = np.nan
@staticmethod
def _ensure_ndarray(x: dict) -> dict:
x = deepcopy(x)
for k, v in x.items():
x[k] = np.atleast_1d(v)
return x
def _gen_prior(self, *, prior: dict) -> xr.DataArray:
"""
Raises
------
ValueError
If the user specifies priors for parameters that do not appear in
the parameter domain.
"""
prior_orig = deepcopy(prior)
if prior_orig is None:
# Uninformative prior.
prior = np.ones([len(x) for x in self.param_domain.values()])
elif set(prior_orig.keys()) - set(self.param_domain.keys()):
msg = (
f"Mismatch between specified parameter domain and supplied "
f"prior.\n"
f"You specified priors for the following parameters that "
f"do not appear in the parameter domain: "
f"{set(prior_orig.keys()) - set(self.param_domain.keys())}"
)
raise ValueError(msg)
elif set(self.param_domain.keys()) - set(prior_orig.keys()):
# The user specified prior probabilities for only a subset
# of the parameters. We use those, obviously; and fill the
# remaining prior distributions with uninformative priors.
grid_dims = []
for param_name, param_vals in self.param_domain.items():
if param_name in prior_orig.keys():
prior_vals = np.atleast_1d(prior_orig[param_name])
else:
prior_vals = np.ones(len(param_vals))
grid_dims.append(prior_vals)
prior_grid = np.meshgrid(*grid_dims, sparse=True, indexing="ij")
prior = np.prod(
np.array(prior_grid, dtype="object") # avoid warning re "ragged" array
)
else:
# A "proper" prior was specified (i.e., prior probabilities for
# all parameters.)
prior_grid = np.meshgrid(
*list(prior_orig.values()), sparse=True, indexing="ij"
)
prior = np.prod(
np.array(prior_grid, dtype="object") # avoid warning re "ragged" array
)
# Normalize.
prior /= prior.sum()
# Create the prior object we are actually going to use.
dims = (*self.param_domain.keys(),)
coords = dict(**self.param_domain)
prior_ = xr.DataArray(data=prior, dims=dims, coords=coords)
return prior_
def _gen_likelihoods(self) -> xr.DataArray:
outcome_dim_name = list(self.outcome_domain.keys())[0]
outcome_values = list(self.outcome_domain.values())[0]
if self.func not in [
"weibull",
"csf",
"norm_cdf",
"norm_cdf_2",
"thurstone_scaling",
]:
raise ValueError(
f"Unknown psychometric function name specified: {self.func}"
)
if self.func == "weibull":
f = psychometric_function.weibull
elif self.func == "csf":
f = psychometric_function.csf
elif self.func == "norm_cdf":
f = psychometric_function.norm_cdf
elif self.func == "norm_cdf_2":
f = psychometric_function.norm_cdf_2
elif self.func == "thurstone_scaling":
f = psychometric_function.thurstone_scaling_function
if self.func == "thurstone_scaling":
prop_correct = f(**self.stim_domain, **self.param_domain)
else:
prop_correct = f(
**self.stim_domain, **self.param_domain, scale=self.stim_scale
)
prop_incorrect = 1 - prop_correct
# Now this is a bit awkward. We concatenate the psychometric
# functions for the different responses. To do that, we first have
# to add an additional dimension.
# TODO: There's got to be a neater way to do this?!
corr_resp_dim = {outcome_dim_name: [outcome_values[0]]}
inccorr_resp_dim = {outcome_dim_name: [outcome_values[1]]}
prop_correct = prop_correct.expand_dims(corr_resp_dim)
prop_incorrect = prop_incorrect.expand_dims(inccorr_resp_dim)
pf_values = xr.concat(
[prop_correct, prop_incorrect],
dim=outcome_dim_name,
coords=self.outcome_domain,
)
return pf_values
def update(self, *, stim: dict, outcome: dict) -> None:
"""
Inform QUEST+ about a newly gathered measurement outcome for a given
stimulus parameter set, and update the posterior accordingly.
Parameters
----------
stim
The stimulus that was used to generate the given outcome.
outcome
The observed outcome.
"""
likelihood = self.likelihoods.sel(**stim, **outcome)
self.posterior = self.posterior * likelihood
self.posterior /= self.posterior.sum()
# Log the results, too.
self.stim_history.append(stim)
self.resp_history.append(outcome)
@property
def next_stim(self) -> dict:
"""
Retrieve the stimulus to present next.
The stimulus will be selected based on the method in
``self.stim_selection``.
"""
new_posterior = self.posterior * self.likelihoods
# Probability.
pk = new_posterior.sum(dim=self.param_domain.keys())
new_posterior /= pk
# Entropies.
#
# Note:
# - np.log(0) returns -inf (division by zero)
# - the multiplcation of new_posterior with -inf values generates
# NaN's
# - xr.DataArray.sum() has special handling for NaN's.
#
# NumPy also emits a warning, which we suppress here.
with np.errstate(divide="ignore"):
H = -(
(new_posterior * np.log(new_posterior)).sum(
dim=self.param_domain.keys()
)
)
# Expected entropies for all possible stimulus parameters.
EH = (pk * H).sum(dim=list(self.outcome_domain.keys()))
if self.stim_selection == "min_entropy":
# Get the stimulus properties that minimize entropy.
indices = EH.argmin(dim=...)
stim = dict()
for stim_property, index in indices.items():
stim_val = EH[stim_property][index].item()
stim[stim_property] = stim_val
self.entropy = EH.min().item()
elif self.stim_selection == "min_n_entropy":
# Number of stimuli to include (the n stimuli that yield the lowest
# entropies)
n_stim = self.stim_selection_options["n"]
indices = np.unravel_index(EH.argsort(), EH.shape)[0]
indices = indices[:n_stim]
while True:
# Randomly pick one index and retrieve its coordinates
# (stimulus parameters).
candidate_index = self._rng.choice(indices)
coords = EH[candidate_index].coords
stim = {
stim_property: stim_val.item()
for stim_property, stim_val in coords.items()
}
max_reps = self.stim_selection_options["max_consecutive_reps"]
if len(self.stim_history) < 2:
break
elif all(
[stim == prev_stim for prev_stim in self.stim_history[-max_reps:]]
):
# Shuffle again.
continue
else:
break
else:
raise ValueError("Unknown stim_selection supplied.")
return stim
@property
def param_estimate(self) -> dict:
"""
Retrieve the final parameter estimates after the QUEST+ run.
The parameters will be calculated according to
``self.param_estimation_method``.
This returns a dictionary of parameter estimates, where the dictionary
keys correspond to the parameter names.
"""
method = self.param_estimation_method
param_estimates = dict()
for param_name in self.param_domain.keys():
params = list(self.param_domain.keys())
params.remove(param_name)
if method == "mean":
param_estimates[param_name] = (
(self.posterior.sum(dim=params) * self.param_domain[param_name])
.sum()
.item()
)
elif method == "mode":
indices = self.posterior.argmax(dim=...)
coords = self.posterior[indices]
param_estimates[param_name] = coords[param_name].item()
else:
raise ValueError("Unknown method parameter.")
return param_estimates
@property
def marginal_posterior(self) -> dict:
"""
Retrieve the a dictionary of marginal posterior probability
density functions (PDFs).
This returns a dictionary of marginal PDFs, where the dictionary keys
correspond to the parameter names.
"""
marginal_posterior = dict()
for param_name in self.param_domain.keys():
marginalized_out_params = list(self.param_domain.keys())
marginalized_out_params.remove(param_name)
marginal_posterior[param_name] = self.posterior.sum(
dim=marginalized_out_params
).values
return marginal_posterior
def to_json(self) -> str:
"""
Dump this `QuestPlus` instance as a JSON string which can be loaded
again later.
Returns
-------
str
A JSON dump of the current `QuestPlus` instance.
See Also
--------
from_json
"""
self_copy = deepcopy(self)
self_copy.prior = self_copy.prior.to_dict()
self_copy.posterior = self_copy.posterior.to_dict()
self_copy.likelihoods = self_copy.likelihoods.to_dict()
if self_copy._rng is not None: # NumPy RandomState cannot be serialized.
self_copy._rng = self_copy._rng.get_state()
return json_tricks.dumps(self_copy, allow_nan=True)
@staticmethod
def from_json(data: str):
"""
Load and recreate a ``QuestPlus`` instance from a JSON string.
Parameters
----------
data
The JSON string, generated via :meth:`to_json`.
Returns
-------
QuestPlus
A ``QuestPlus`` instance, generated from the JSON string.
See Also
--------
to_json
"""
loaded = json_tricks.loads(data)
loaded.prior = xr.DataArray.from_dict(loaded.prior)
loaded.posterior = xr.DataArray.from_dict(loaded.posterior)
loaded.likelihoods = xr.DataArray.from_dict(loaded.likelihoods)
if loaded._rng is not None:
state = deepcopy(loaded._rng)
loaded._rng = np.random.RandomState()
loaded._rng.set_state(state)
return loaded
def __eq__(self, other):
if not self.likelihoods.equals(other.likelihoods):
return False
if not self.prior.equals(other.prior):
return False
if not self.posterior.equals(other.posterior):
return False
for param_name in self.param_domain.keys():
if not np.array_equal(
self.param_domain[param_name], other.param_domain[param_name]
):
return False
for stim_property in self.stim_domain.keys():
if not np.array_equal(
self.stim_domain[stim_property], other.stim_domain[stim_property]
):
return False
for outcome_name in self.outcome_domain.keys():
if not np.array_equal(
self.outcome_domain[outcome_name], other.outcome_domain[outcome_name]
):
return False
if self.stim_selection != other.stim_selection:
return False
if self.stim_selection_options != other.stim_selection_options:
return False
if self.stim_scale != other.stim_scale:
return False
if self.stim_history != other.stim_history:
return False
if self.resp_history != other.resp_history:
return False
if self.param_estimation_method != other.param_estimation_method:
return False
if self.func != other.func:
return False
return True
class QuestPlusWeibull(QuestPlus):
def __init__(
self,
*,
intensities: Sequence,
thresholds: Sequence,
slopes: Sequence,
lower_asymptotes: Sequence,
lapse_rates: Sequence,
prior: Optional[dict] = None,
responses: Sequence = ("Yes", "No"),
stim_scale: str = "log10",
stim_selection_method: str = "min_entropy",
stim_selection_options: Optional[dict] = None,
param_estimation_method: str = "mean",
):
"""QUEST+ using the Weibull distribution function.
This is a convenience class that wraps `QuestPlus`.
"""
super().__init__(
stim_domain=dict(intensity=intensities),
param_domain=dict(
threshold=thresholds,
slope=slopes,
lower_asymptote=lower_asymptotes,
lapse_rate=lapse_rates,
),
outcome_domain=dict(response=responses),
prior=prior,
stim_scale=stim_scale,
stim_selection_method=stim_selection_method,
stim_selection_options=stim_selection_options,
param_estimation_method=param_estimation_method,
func="weibull",
)
@property
def intensities(self) -> np.ndarray:
"""
Stimulus intensity or contrast domain.
"""
return self.stim_domain["intensity"]
@property
def thresholds(self) -> np.ndarray:
"""
The threshold parameter domain.
"""
return self.param_domain["threshold"]
@property
def slopes(self) -> np.ndarray:
"""
The slope parameter domain.
"""
return self.param_domain["slope"]
@property
def lower_asymptotes(self) -> np.ndarray:
"""
The lower asymptote parameter domain.
"""
return self.param_domain["lower_asymptote"]
@property
def lapse_rates(self) -> np.ndarray:
"""
The lapse rate parameter domain.
"""
return self.param_domain["lapse_rate"]
@property
def responses(self) -> np.ndarray:
"""
The response (outcome) domain.
"""
return self.outcome_domain["response"]
@property
def next_intensity(self) -> float:
"""
The intensity or contrast to present next.
"""
return super().next_stim["intensity"]
def update(self, *, intensity: float, response: str) -> None:
"""
Inform QUEST+ about a newly gathered measurement outcome for a given
stimulus intensity or contrast, and update the posterior accordingly.
Parameters
----------
intensity
The intensity or contrast of the presented stimulus.
response
The observed response.
"""
super().update(stim=dict(intensity=intensity), outcome=dict(response=response))
class QuestPlusThurstone(QuestPlus):
def __init__(
self,
*,
physical_magnitudes_stim_1: Sequence,
physical_magnitudes_stim_2: Sequence,
thresholds: Sequence,
powers: Sequence,
perceptual_scale_maxs: Sequence,
prior: Optional[dict] = None,
responses: Sequence = ("First", "Second"),
stim_selection_method: str = "min_entropy",
stim_selection_options: Optional[dict] = None,
param_estimation_method: str = "mean",
):
"""QUEST+ for Thurstonian scaling.
This is a convenience class that wraps `QuestPlus`.
"""
super().__init__(
stim_domain={
"physical_magnitudes_stim_1": physical_magnitudes_stim_1,
"physical_magnitudes_stim_2": physical_magnitudes_stim_2,
},
param_domain={
"threshold": thresholds,
"power": powers,
"perceptual_scale_max": perceptual_scale_maxs,
},
outcome_domain={"response": responses},
prior=prior,
stim_scale=None,
stim_selection_method=stim_selection_method,
stim_selection_options=stim_selection_options,
param_estimation_method=param_estimation_method,
func="thurstone_scaling",
)
@property
def physical_magnitudes_stim_1(self) -> np.ndarray:
"""
Physical magnitudes of the first stimulus.
"""
return self.stim_domain["physical_magnitudes_stim_1"]
@property
def physical_magnitudes_stim_2(self) -> np.ndarray:
"""
Physical magnitudes of the second stimulus.
"""
return self.stim_domain["physical_magnitudes_stim_2"]
@property
def thresholds(self) -> np.ndarray:
"""
The threshold parameter domain.
"""
return self.param_domain["threshold"]
@property
def powers(self) -> np.ndarray:
"""
The power parameter domain.
"""
return self.param_domain["power"]
@property
def perceptual_scale_maxss(self) -> np.ndarray:
"""
The "maximum value of the subjective perceptual scale" parameter domain.
"""
return self.param_domain["perceptual_scale_max"]
@property
def responses(self) -> np.ndarray:
"""
The response (outcome) domain.
"""
return self.outcome_domain["response"]
def update(self, *, stim: dict, response: str) -> None:
"""
Inform QUEST+ about a newly gathered measurement outcome for a given
stimulus parameter set, and update the posterior accordingly.
Parameters
----------
stim
The stimulus that was used to generate the given outcome.
outcome
The observed outcome.
"""
super().update(stim=stim, outcome=dict(response=response))
|