File: scale_engine.py

package info (click to toggle)
python-qwt 0.15.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,396 kB
  • sloc: python: 12,138; makefile: 19; sh: 10
file content (1080 lines) | stat: -rw-r--r-- 36,365 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
# -*- coding: utf-8 -*-
#
# Licensed under the terms of the Qwt License
# Copyright (c) 2002 Uwe Rathmann, for the original C++ code
# Copyright (c) 2015 Pierre Raybaut, for the Python translation/optimization
# (see LICENSE file for more details)

"""
QwtScaleEngine
--------------

.. autoclass:: QwtScaleEngine
   :members:

QwtLinearScaleEngine
--------------------

.. autoclass:: QwtLinearScaleEngine
   :members:

QwtLogScaleEngine
-----------------

.. autoclass:: QwtLogScaleEngine
   :members:
"""

import math
import sys

import numpy as np
from qtpy.QtCore import qFuzzyCompare

from qwt._math import qwtFuzzyCompare
from qwt.interval import QwtInterval
from qwt.scale_div import QwtScaleDiv
from qwt.transform import QwtLogTransform, QwtTransform

DBL_MAX = sys.float_info.max
LOG_MIN = 1.0e-150
LOG_MAX = 1.0e150


def qwtLogInterval(base, interval):
    return QwtInterval(
        math.log(interval.minValue(), base), math.log(interval.maxValue(), base)
    )


def qwtPowInterval(base, interval):
    return QwtInterval(
        math.pow(base, interval.minValue()), math.pow(base, interval.maxValue())
    )


def qwtStepSize(intervalSize, maxSteps, base):
    """this version often doesn't find the best ticks: f.e for 15: 5, 10"""
    minStep = divideInterval(intervalSize, maxSteps, base)
    if minStep != 0.0:
        #  # ticks per interval
        numTicks = math.ceil(abs(intervalSize / minStep)) - 1
        #  Do the minor steps fit into the interval?
        if (
            qwtFuzzyCompare(
                (numTicks + 1) * abs(minStep), abs(intervalSize), intervalSize
            )
            > 0
        ):
            #  The minor steps doesn't fit into the interval
            return 0.5 * intervalSize
    return minStep


EPS = 1.0e-6


def ceilEps(value, intervalSize):
    """
    Ceil a value, relative to an interval

    :param float value: Value to be ceiled
    :param float intervalSize: Interval size
    :return: Rounded value

    .. seealso::

        :py:func:`qwt.scale_engine.floorEps()`
    """
    eps = EPS * intervalSize
    value = (value - eps) / intervalSize
    return math.ceil(value) * intervalSize


def floorEps(value, intervalSize):
    """
    Floor a value, relative to an interval

    :param float value: Value to be floored
    :param float intervalSize: Interval size
    :return: Rounded value

    .. seealso::

        :py:func:`qwt.scale_engine.ceilEps()`
    """
    eps = EPS * intervalSize
    value = (value + eps) / intervalSize
    return math.floor(value) * intervalSize


def divideEps(intervalSize, numSteps):
    """
    Divide an interval into steps

    `stepSize = (intervalSize - intervalSize * 10**-6) / numSteps`

    :param float intervalSize: Interval size
    :param float numSteps: Number of steps
    :return: Step size
    """
    if numSteps == 0.0 or intervalSize == 0.0:
        return 0.0
    return (intervalSize - (EPS * intervalSize)) / numSteps


def divideInterval(intervalSize, numSteps, base):
    """
    Calculate a step size for a given interval

    :param float intervalSize: Interval size
    :param float numSteps: Number of steps
    :param int base: Base for the division (usually 10)
    :return: Calculated step size
    """
    if numSteps <= 0:
        return 0.0
    v = divideEps(intervalSize, numSteps)
    if v == 0.0:
        return 0.0

    lx = math.log(abs(v), base)
    p = math.floor(lx)
    fraction = math.pow(base, lx - p)
    n = base
    while n > 1 and fraction <= n // 2:
        n //= 2

    stepSize = n * math.pow(base, p)
    if v < 0:
        stepSize = -stepSize

    return stepSize


class QwtScaleEngine_PrivateData(object):
    def __init__(self):
        self.attributes = QwtScaleEngine.NoAttribute
        self.lowerMargin = 0.0
        self.upperMargin = 0.0
        self.referenceValue = 0.0
        self.base = 10
        self.transform = None  # QwtTransform


class QwtScaleEngine(object):
    """
    Base class for scale engines.

    A scale engine tries to find "reasonable" ranges and step sizes
    for scales.

    The layout of the scale can be varied with `setAttribute()`.

    `PythonQwt` offers implementations for logarithmic and linear scales.

    Layout attributes:

      * `QwtScaleEngine.NoAttribute`: No attributes
      * `QwtScaleEngine.IncludeReference`: Build a scale which includes the
        `reference()` value
      * `QwtScaleEngine.Symmetric`: Build a scale which is symmetric to the
        `reference()` value
      * `QwtScaleEngine.Floating`: The endpoints of the scale are supposed to
        be equal the outmost included values plus the specified margins (see
        `setMargins()`). If this attribute is *not* set, the endpoints of the
        scale will be integer multiples of the step size.
      * `QwtScaleEngine.Inverted`: Turn the scale upside down
    """

    # enum Attribute
    NoAttribute = 0x00
    IncludeReference = 0x01
    Symmetric = 0x02
    Floating = 0x04
    Inverted = 0x08

    def __init__(self, base=10):
        self.__data = QwtScaleEngine_PrivateData()
        self.setBase(base)

    def autoScale(self, maxNumSteps, x1, x2, stepSize, relativeMargin=0.0):
        """
        Align and divide an interval

        :param int maxNumSteps: Max. number of steps
        :param float x1: First limit of the interval (In/Out)
        :param float x2: Second limit of the interval (In/Out)
        :param float stepSize: Step size
        :param float relativeMargin: Margin as a fraction of the interval width
        :return: tuple (x1, x2, stepSize)
        """
        pass

    def divideScale(self, x1, x2, maxMajorSteps, maxMinorSteps, stepSize=0.0):
        """
        Calculate a scale division

        :param float x1: First interval limit
        :param float x2: Second interval limit
        :param int maxMajorSteps: Maximum for the number of major steps
        :param int maxMinorSteps: Maximum number of minor steps
        :param float stepSize: Step size. If stepSize == 0.0, the scaleEngine calculates one
        :return: Calculated scale division
        """
        pass

    def setTransformation(self, transform):
        """
        Assign a transformation

        :param qwt.transform.QwtTransform transform: Transformation

        The transformation object is used as factory for clones
        that are returned by `transformation()`

        The scale engine takes ownership of the transformation.

        .. seealso::

            :py:meth:`QwtTransform.copy()`, :py:meth:`transformation()`
        """
        assert transform is None or isinstance(transform, QwtTransform)
        if transform != self.__data.transform:
            self.__data.transform = transform

    def transformation(self):
        """
        Create and return a clone of the transformation
        of the engine. When the engine has no special transformation
        None is returned, indicating no transformation.

        :return: A clone of the transfomation

        .. seealso::

            :py:meth:`setTransformation()`
        """
        if self.__data.transform:
            return self.__data.transform.copy()

    def lowerMargin(self):
        """
        :return: the margin at the lower end of the scale

        The default margin is 0.

        .. seealso::

            :py:meth:`setMargins()`
        """
        return self.__data.lowerMargin

    def upperMargin(self):
        """
        :return: the margin at the upper end of the scale

        The default margin is 0.

        .. seealso::

            :py:meth:`setMargins()`
        """
        return self.__data.upperMargin

    def setMargins(self, lower, upper):
        """
        Specify margins at the scale's endpoints

        :param float lower: minimum distance between the scale's lower boundary and the smallest enclosed value
        :param float upper: minimum distance between the scale's upper boundary and the greatest enclosed value
        :return: A clone of the transfomation

        Margins can be used to leave a minimum amount of space between
        the enclosed intervals and the boundaries of the scale.

        .. warning::

            `QwtLogScaleEngine` measures the margins in decades.

        .. seealso::

            :py:meth:`upperMargin()`, :py:meth:`lowerMargin()`
        """
        self.__data.lowerMargin = max([lower, 0.0])
        self.__data.upperMargin = max([upper, 0.0])

    def divideInterval(self, intervalSize, numSteps):
        """
        Calculate a step size for a given interval

        :param float intervalSize: Interval size
        :param float numSteps: Number of steps
        :return: Step size
        """
        return divideInterval(intervalSize, numSteps, self.__data.base)

    def contains(self, interval, value):
        """
        Check if an interval "contains" a value

        :param float intervalSize: Interval size
        :param float value: Value
        :return: True, when the value is inside the interval
        """
        if not interval.isValid():
            return False
        eps = abs(1.0e-6 * interval.width())
        if interval.minValue() - value > eps or value - interval.maxValue() > eps:
            return False
        else:
            return True

    def strip(self, ticks, interval):
        """
        Remove ticks from a list, that are not inside an interval

        :param list ticks: Tick list
        :param qwt.interval.QwtInterval interval: Interval
        :return: Stripped tick list
        """
        if not interval.isValid() or not ticks:
            return []
        if self.contains(interval, ticks[0]) and self.contains(interval, ticks[-1]):
            return ticks
        return [tick for tick in ticks if self.contains(interval, tick)]

    def buildInterval(self, value):
        """
        Build an interval around a value

        In case of v == 0.0 the interval is [-0.5, 0.5],
        otherwide it is [0.5 * v, 1.5 * v]

        :param float value: Initial value
        :return: Calculated interval
        """
        if value == 0.0:
            delta = 0.5
        else:
            delta = abs(0.5 * value)
        if DBL_MAX - delta < value:
            return QwtInterval(DBL_MAX - delta, DBL_MAX)
        if -DBL_MAX + delta > value:
            return QwtInterval(-DBL_MAX, -DBL_MAX + delta)
        return QwtInterval(value - delta, value + delta)

    def setAttribute(self, attribute, on=True):
        """
        Change a scale attribute

        :param int attribute: Attribute to change
        :param bool on: On/Off
        :return: Calculated interval

        .. seealso::

            :py:meth:`testAttribute()`
        """
        if on:
            self.__data.attributes |= attribute
        else:
            self.__data.attributes &= ~attribute

    def testAttribute(self, attribute):
        """
        :param int attribute: Attribute to be tested
        :return: True, if attribute is enabled

        .. seealso::

            :py:meth:`setAttribute()`
        """
        return self.__data.attributes & attribute

    def setAttributes(self, attributes):
        """
        Change the scale attribute

        :param attributes: Set scale attributes

        .. seealso::

            :py:meth:`attributes()`
        """
        self.__data.attributes = attributes

    def attributes(self):
        """
        :return: Scale attributes

        .. seealso::

            :py:meth:`setAttributes()`, :py:meth:`testAttribute()`
        """
        return self.__data.attributes

    def setReference(self, r):
        """
        Specify a reference point

        :param float r: new reference value

        The reference point is needed if options `IncludeReference` or
        `Symmetric` are active. Its default value is 0.0.
        """
        self.__data.referenceValue = r

    def reference(self):
        """
        :return: the reference value

        .. seealso::

            :py:meth:`setReference()`, :py:meth:`setAttribute()`
        """
        return self.__data.referenceValue

    def setBase(self, base):
        """
        Set the base of the scale engine

        While a base of 10 is what 99.9% of all applications need
        certain scales might need a different base: f.e 2

        The default setting is 10

        :param int base: Base of the engine

        .. seealso::

            :py:meth:`base()`
        """
        self.__data.base = max([base, 2])

    def base(self):
        """
        :return: Base of the scale engine

        .. seealso::

            :py:meth:`setBase()`
        """
        return self.__data.base


class QwtLinearScaleEngine(QwtScaleEngine):
    r"""
    A scale engine for linear scales

    The step size will fit into the pattern
    \f$\left\{ 1,2,5\right\} \cdot 10^{n}\f$, where n is an integer.
    """

    def __init__(self, base=10):
        super(QwtLinearScaleEngine, self).__init__(base)

    def autoScale(self, maxNumSteps, x1, x2, stepSize, relativeMargin=0.0):
        """
        Align and divide an interval

        :param int maxNumSteps: Max. number of steps
        :param float x1: First limit of the interval (In/Out)
        :param float x2: Second limit of the interval (In/Out)
        :param float stepSize: Step size
        :param float relativeMargin: Margin as a fraction of the interval width
        :return: tuple (x1, x2, stepSize)

        .. seealso::

            :py:meth:`setAttribute()`
        """
        # Apply the relative margin (fraction of the interval width) in linear space:
        if relativeMargin > 0.0:
            margin = (x2 - x1) * relativeMargin
            x1 -= margin
            x2 += margin

        interval = QwtInterval(x1, x2)
        interval = interval.normalized()
        interval.setMinValue(interval.minValue() - self.lowerMargin())
        interval.setMaxValue(interval.maxValue() + self.upperMargin())
        if self.testAttribute(QwtScaleEngine.Symmetric):
            interval = interval.symmetrize(self.reference())
        if self.testAttribute(QwtScaleEngine.IncludeReference):
            interval = interval.extend(self.reference())
        if interval.width() == 0.0:
            interval = self.buildInterval(interval.minValue())
        stepSize = divideInterval(interval.width(), max([maxNumSteps, 1]), self.base())
        if not self.testAttribute(QwtScaleEngine.Floating):
            interval = self.align(interval, stepSize)
        x1 = interval.minValue()
        x2 = interval.maxValue()
        if self.testAttribute(QwtScaleEngine.Inverted):
            x1, x2 = x2, x1
            stepSize = -stepSize
        return x1, x2, stepSize

    def divideScale(self, x1, x2, maxMajorSteps, maxMinorSteps, stepSize=0.0):
        """
        Calculate a scale division for an interval

        :param float x1: First interval limit
        :param float x2: Second interval limit
        :param int maxMajorSteps: Maximum for the number of major steps
        :param int maxMinorSteps: Maximum number of minor steps
        :param float stepSize: Step size. If stepSize == 0.0, the scaleEngine calculates one
        :return: Calculated scale division
        """
        interval = QwtInterval(x1, x2).normalized()
        if interval.width() <= 0:
            return QwtScaleDiv()
        stepSize = abs(stepSize)
        if stepSize == 0.0:
            if maxMajorSteps < 1:
                maxMajorSteps = 1
            stepSize = divideInterval(interval.width(), maxMajorSteps, self.base())
        scaleDiv = QwtScaleDiv()
        if stepSize != 0.0:
            ticks = self.buildTicks(interval, stepSize, maxMinorSteps)
            scaleDiv = QwtScaleDiv(interval, ticks)
        if x1 > x2:
            scaleDiv.invert()
        return scaleDiv

    def buildTicks(self, interval, stepSize, maxMinorSteps):
        """
        Calculate ticks for an interval

        :param qwt.interval.QwtInterval interval: Interval
        :param float stepSize: Step size
        :param int maxMinorSteps: Maximum number of minor steps
        :return: Calculated ticks
        """
        ticks = [[] for _i in range(QwtScaleDiv.NTickTypes)]
        boundingInterval = self.align(interval, stepSize)
        ticks[QwtScaleDiv.MajorTick] = self.buildMajorTicks(boundingInterval, stepSize)
        if maxMinorSteps > 0:
            self.buildMinorTicks(ticks, maxMinorSteps, stepSize)
        for i in range(QwtScaleDiv.NTickTypes):
            ticks[i] = self.strip(ticks[i], interval)
            for j in range(len(ticks[i])):
                if qwtFuzzyCompare(ticks[i][j], 0.0, stepSize) == 0:
                    ticks[i][j] = 0.0
        return ticks

    def buildMajorTicks(self, interval, stepSize):
        """
        Calculate major ticks for an interval

        :param qwt.interval.QwtInterval interval: Interval
        :param float stepSize: Step size
        :return: Calculated ticks
        """
        numTicks = min([round(interval.width() / stepSize) + 1, 10000])
        if np.isnan(numTicks):
            numTicks = 0
        ticks = [interval.minValue()]
        for i in range(1, int(numTicks - 1)):
            ticks += [interval.minValue() + i * stepSize]
        ticks += [interval.maxValue()]
        return ticks

    def buildMinorTicks(self, ticks, maxMinorSteps, stepSize):
        """
        Calculate minor ticks for an interval

        :param list ticks: Major ticks (returned)
        :param int maxMinorSteps: Maximum number of minor steps
        :param float stepSize: Step size
        """
        minStep = qwtStepSize(stepSize, maxMinorSteps, self.base())
        if minStep == 0.0:
            return
        numTicks = int(math.ceil(abs(stepSize / minStep)) - 1)
        medIndex = -1
        if numTicks % 2:
            medIndex = numTicks / 2
        for val in ticks[QwtScaleDiv.MajorTick]:
            for k in range(numTicks):
                val += minStep
                alignedValue = val
                if qwtFuzzyCompare(val, 0.0, stepSize) == 0:
                    alignedValue = 0.0
                if k == medIndex:
                    ticks[QwtScaleDiv.MediumTick] += [alignedValue]
                else:
                    ticks[QwtScaleDiv.MinorTick] += [alignedValue]

    def align(self, interval, stepSize):
        """
        Align an interval to a step size

        The limits of an interval are aligned that both are integer
        multiples of the step size.

        :param qwt.interval.QwtInterval interval: Interval
        :param float stepSize: Step size
        :return: Aligned interval
        """
        x1 = interval.minValue()
        x2 = interval.maxValue()
        eps = 0.000000000001
        if -DBL_MAX + stepSize <= x1:
            x = floorEps(x1, stepSize)
            if abs(x) <= eps or not qFuzzyCompare(x1, x):
                x1 = x
        if DBL_MAX - stepSize >= x2:
            x = ceilEps(x2, stepSize)
            if abs(x) <= eps or not qFuzzyCompare(x2, x):
                x2 = x
        return QwtInterval(x1, x2)


class QwtLogScaleEngine(QwtScaleEngine):
    """
    A scale engine for logarithmic scales

    The step size is measured in *decades* and the major step size will be
    adjusted to fit the pattern {1,2,3,5}.10**n, where n is a natural number
    including zero.

    .. warning::

        The step size as well as the margins are measured in *decades*.
    """

    def __init__(self, base=10):
        super(QwtLogScaleEngine, self).__init__(base)
        self.setTransformation(QwtLogTransform())

    def autoScale(self, maxNumSteps, x1, x2, stepSize, relativeMargin=0.0):
        """
        Align and divide an interval

        :param int maxNumSteps: Max. number of steps
        :param float x1: First limit of the interval (In/Out)
        :param float x2: Second limit of the interval (In/Out)
        :param float stepSize: Step size
        :param float relativeMargin: Margin as a fraction of the interval width
        :return: tuple (x1, x2, stepSize)

        .. seealso::

            :py:meth:`setAttribute()`
        """
        if x1 > x2:
            x1, x2 = x2, x1
        logBase = self.base()

        # Apply the relative margin (fraction of the interval width) in logarithmic
        # space, and convert back to linear space.
        if relativeMargin is not None:
            x1 = min(max([x1, LOG_MIN]), LOG_MAX)
            x2 = min(max([x2, LOG_MIN]), LOG_MAX)
            log_margin = math.log(x2 / x1, logBase) * relativeMargin
            x1 /= math.pow(logBase, log_margin)
            x2 *= math.pow(logBase, log_margin)

        interval = QwtInterval(
            x1 / math.pow(logBase, self.lowerMargin()),
            x2 * math.pow(logBase, self.upperMargin()),
        )
        if interval.maxValue() / interval.minValue() < logBase:
            linearScaler = QwtLinearScaleEngine()
            linearScaler.setAttributes(self.attributes())
            linearScaler.setReference(self.reference())
            linearScaler.setMargins(self.lowerMargin(), self.upperMargin())

            x1, x2, stepSize = linearScaler.autoScale(maxNumSteps, x1, x2, stepSize)

            linearInterval = QwtInterval(x1, x2).normalized()
            linearInterval = linearInterval.limited(LOG_MIN, LOG_MAX)

            if linearInterval.maxValue() / linearInterval.minValue() < logBase:
                # The min / max interval is too short to be represented as a log scale.
                # Set the step to 0, so that a new step is calculated and a linear scale is used.
                stepSize = 0.0
                return x1, x2, stepSize

        logRef = 1.0
        if self.reference() > LOG_MIN / 2:
            logRef = min([self.reference(), LOG_MAX / 2])

        if self.testAttribute(QwtScaleEngine.Symmetric):
            delta = max([interval.maxValue() / logRef, logRef / interval.minValue()])
            interval.setInterval(logRef / delta, logRef * delta)

        if self.testAttribute(QwtScaleEngine.IncludeReference):
            interval = interval.extend(logRef)

        interval = interval.limited(LOG_MIN, LOG_MAX)

        if interval.width() == 0.0:
            interval = self.buildInterval(interval.minValue())

        stepSize = self.divideInterval(
            qwtLogInterval(logBase, interval).width(), max([maxNumSteps, 1])
        )
        if stepSize < 1.0:
            stepSize = 1.0

        if not self.testAttribute(QwtScaleEngine.Floating):
            interval = self.align(interval, stepSize)

        x1 = interval.minValue()
        x2 = interval.maxValue()

        if self.testAttribute(QwtScaleEngine.Inverted):
            x1, x2 = x2, x1
            stepSize = -stepSize

        return x1, x2, stepSize

    def divideScale(self, x1, x2, maxMajorSteps, maxMinorSteps, stepSize=0.0):
        """
        Calculate a scale division for an interval

        :param float x1: First interval limit
        :param float x2: Second interval limit
        :param int maxMajorSteps: Maximum for the number of major steps
        :param int maxMinorSteps: Maximum number of minor steps
        :param float stepSize: Step size. If stepSize == 0.0, the scaleEngine calculates one
        :return: Calculated scale division
        """
        interval = QwtInterval(x1, x2).normalized()
        interval = interval.limited(LOG_MIN, LOG_MAX)

        if interval.width() <= 0:
            return QwtScaleDiv()

        logBase = self.base()

        if interval.maxValue() / interval.minValue() < logBase:
            linearScaler = QwtLinearScaleEngine()
            linearScaler.setAttributes(self.attributes())
            linearScaler.setReference(self.reference())
            linearScaler.setMargins(self.lowerMargin(), self.upperMargin())
            return linearScaler.divideScale(
                x1, x2, maxMajorSteps, maxMinorSteps, stepSize
            )

        stepSize = abs(stepSize)
        if stepSize == 0.0:
            if maxMajorSteps < 1:
                maxMajorSteps = 1
            stepSize = self.divideInterval(
                qwtLogInterval(logBase, interval).width(), maxMajorSteps
            )
            if stepSize < 1.0:
                stepSize = 1.0

        scaleDiv = QwtScaleDiv()
        if stepSize != 0.0:
            ticks = self.buildTicks(interval, stepSize, maxMinorSteps)
            scaleDiv = QwtScaleDiv(interval, ticks)

        if x1 > x2:
            scaleDiv.invert()

        return scaleDiv

    def buildTicks(self, interval, stepSize, maxMinorSteps):
        """
        Calculate ticks for an interval

        :param qwt.interval.QwtInterval interval: Interval
        :param float stepSize: Step size
        :param int maxMinorSteps: Maximum number of minor steps
        :return: Calculated ticks
        """
        ticks = [[] for _i in range(QwtScaleDiv.NTickTypes)]
        boundingInterval = self.align(interval, stepSize)
        ticks[QwtScaleDiv.MajorTick] = self.buildMajorTicks(boundingInterval, stepSize)
        if maxMinorSteps > 0:
            self.buildMinorTicks(ticks, maxMinorSteps, stepSize)
        for i in range(QwtScaleDiv.NTickTypes):
            ticks[i] = self.strip(ticks[i], interval)
        return ticks

    def buildMajorTicks(self, interval, stepSize):
        """
        Calculate major ticks for an interval

        :param qwt.interval.QwtInterval interval: Interval
        :param float stepSize: Step size
        :return: Calculated ticks
        """
        width = qwtLogInterval(self.base(), interval).width()
        numTicks = min([int(round(width / stepSize)) + 1, 10000])

        lxmin = math.log(interval.minValue())
        lxmax = math.log(interval.maxValue())
        lstep = (lxmax - lxmin) / float(numTicks - 1)

        ticks = [interval.minValue()]
        for i in range(1, numTicks - 1):
            ticks += [math.exp(lxmin + float(i) * lstep)]
        ticks += [interval.maxValue()]
        return ticks

    def buildMinorTicks(self, ticks, maxMinorSteps, stepSize):
        """
        Calculate minor ticks for an interval

        :param list ticks: Major ticks (returned)
        :param int maxMinorSteps: Maximum number of minor steps
        :param float stepSize: Step size
        """
        logBase = self.base()

        if stepSize < 1.1:
            minStep = self.divideInterval(stepSize, maxMinorSteps + 1)
            if minStep == 0.0:
                return

            numSteps = int(round(stepSize / minStep))

            mediumTickIndex = -1
            if numSteps > 2 and numSteps % 2 == 0:
                mediumTickIndex = numSteps / 2

            for v in ticks[QwtScaleDiv.MajorTick]:
                s = logBase / numSteps
                if s >= 1.0:
                    if not qFuzzyCompare(s, 1.0):
                        ticks[QwtScaleDiv.MinorTick] += [v * s]
                    for j in range(2, numSteps):
                        ticks[QwtScaleDiv.MinorTick] += [v * j * s]
                else:
                    for j in range(1, numSteps):
                        tick = v + j * v * (logBase - 1) / numSteps
                        if j == mediumTickIndex:
                            ticks[QwtScaleDiv.MediumTick] += [tick]
                        else:
                            ticks[QwtScaleDiv.MinorTick] += [tick]

        else:
            minStep = self.divideInterval(stepSize, maxMinorSteps)
            if minStep == 0.0:
                return

            if minStep < 1.0:
                minStep = 1.0

            numTicks = int(round(stepSize / minStep)) - 1

            if qwtFuzzyCompare((numTicks + 1) * minStep, stepSize, stepSize) > 0:
                numTicks = 0

            if numTicks < 1:
                return

            mediumTickIndex = -1
            if numTicks > 2 and numTicks % 2:
                mediumTickIndex = numTicks / 2

            minFactor = max([math.pow(logBase, minStep), float(logBase)])

            for tick in ticks[QwtScaleDiv.MajorTick]:
                for j in range(numTicks):
                    tick *= minFactor
                    if j == mediumTickIndex:
                        ticks[QwtScaleDiv.MediumTick] += [tick]
                    else:
                        ticks[QwtScaleDiv.MinorTick] += [tick]

    def align(self, interval, stepSize):
        """
        Align an interval to a step size

        The limits of an interval are aligned that both are integer
        multiples of the step size.

        :param qwt.interval.QwtInterval interval: Interval
        :param float stepSize: Step size
        :return: Aligned interval
        """
        intv = qwtLogInterval(self.base(), interval)

        x1 = floorEps(intv.minValue(), stepSize)
        if qwtFuzzyCompare(interval.minValue(), x1, stepSize) == 0:
            x1 = interval.minValue()

        x2 = ceilEps(intv.maxValue(), stepSize)
        if qwtFuzzyCompare(interval.maxValue(), x2, stepSize) == 0:
            x2 = interval.maxValue()

        return qwtPowInterval(self.base(), QwtInterval(x1, x2))


class QwtDateTimeScaleEngine(QwtLinearScaleEngine):
    """
    A scale engine for datetime scales that creates intelligent time-based tick intervals.

    This engine calculates tick intervals that correspond to meaningful time units
    (seconds, minutes, hours, days, weeks, months, years) rather than arbitrary
    numerical spacing.
    """

    # Time intervals in seconds
    TIME_INTERVALS = [
        1,  # 1 second
        5,  # 5 seconds
        10,  # 10 seconds
        15,  # 15 seconds
        30,  # 30 seconds
        60,  # 1 minute
        2 * 60,  # 2 minutes
        5 * 60,  # 5 minutes
        10 * 60,  # 10 minutes
        15 * 60,  # 15 minutes
        30 * 60,  # 30 minutes
        60 * 60,  # 1 hour
        2 * 60 * 60,  # 2 hours
        3 * 60 * 60,  # 3 hours
        6 * 60 * 60,  # 6 hours
        12 * 60 * 60,  # 12 hours
        24 * 60 * 60,  # 1 day
        2 * 24 * 60 * 60,  # 2 days
        7 * 24 * 60 * 60,  # 1 week
        2 * 7 * 24 * 60 * 60,  # 2 weeks
        30 * 24 * 60 * 60,  # 1 month (approx)
        3 * 30 * 24 * 60 * 60,  # 3 months (approx)
        6 * 30 * 24 * 60 * 60,  # 6 months (approx)
        365 * 24 * 60 * 60,  # 1 year (approx)
    ]

    def __init__(self, base=10):
        super(QwtDateTimeScaleEngine, self).__init__(base)

    def divideScale(self, x1, x2, maxMajorSteps, maxMinorSteps, stepSize=0.0):
        """
        Calculate a scale division for a datetime interval

        :param float x1: First interval limit (Unix timestamp)
        :param float x2: Second interval limit (Unix timestamp)
        :param int maxMajorSteps: Maximum for the number of major steps
        :param int maxMinorSteps: Maximum number of minor steps
        :param float stepSize: Step size. If stepSize == 0.0, calculates intelligent datetime step
        :return: Calculated scale division
        """
        interval = QwtInterval(x1, x2).normalized()
        if interval.width() <= 0:
            return QwtScaleDiv()

        # If stepSize is provided and > 0, use parent implementation
        if stepSize > 0.0:
            return super(QwtDateTimeScaleEngine, self).divideScale(
                x1, x2, maxMajorSteps, maxMinorSteps, stepSize
            )

        # Calculate intelligent datetime step size
        duration = interval.width()  # Duration in seconds

        # Find the best time interval for the given duration and max steps
        best_step = self._find_best_time_step(duration, maxMajorSteps)

        # Use the calculated datetime step
        scaleDiv = QwtScaleDiv()
        if best_step > 0.0:
            ticks = self.buildTicks(interval, best_step, maxMinorSteps)
            scaleDiv = QwtScaleDiv(interval, ticks)

        if x1 > x2:
            scaleDiv.invert()

        return scaleDiv

    def _find_best_time_step(self, duration, max_steps):
        """
        Find the best time interval step for the given duration and maximum steps.

        :param float duration: Total duration in seconds
        :param int max_steps: Maximum number of major ticks
        :return: Best step size in seconds
        """
        if max_steps < 1:
            max_steps = 1

        # Calculate the target step size
        target_step = duration / max_steps

        # Find the time interval that is closest to our target
        best_step = self.TIME_INTERVALS[0]
        min_error = abs(target_step - best_step)

        for interval in self.TIME_INTERVALS:
            error = abs(target_step - interval)
            if error < min_error:
                min_error = error
                best_step = interval
            # If the interval is getting much larger than target, stop
            elif interval > target_step * 2:
                break

        return float(best_step)

    def buildMinorTicks(self, ticks, maxMinorSteps, stepSize):
        """
        Calculate minor ticks for datetime intervals

        :param list ticks: List of tick arrays
        :param int maxMinorSteps: Maximum number of minor steps
        :param float stepSize: Major tick step size
        """
        if maxMinorSteps < 1:
            return

        # For datetime, create intelligent minor tick intervals
        minor_step = self._get_minor_step(stepSize, maxMinorSteps)

        if minor_step <= 0:
            return

        major_ticks = ticks[QwtScaleDiv.MajorTick]
        if len(major_ticks) < 2:
            return

        minor_ticks = []

        # Generate minor ticks between each pair of major ticks
        for i in range(len(major_ticks) - 1):
            start = major_ticks[i]
            end = major_ticks[i + 1]

            # Add minor ticks between start and end
            current = start + minor_step
            while current < end:
                minor_ticks.append(current)
                current += minor_step

        ticks[QwtScaleDiv.MinorTick] = minor_ticks

    def _get_minor_step(self, major_step, max_minor_steps):
        """
        Calculate appropriate minor tick step size for datetime intervals

        :param float major_step: Major tick step size in seconds
        :param int max_minor_steps: Maximum number of minor steps
        :return: Minor tick step size in seconds
        """
        # Define sensible minor tick divisions for different time scales
        if major_step >= 365 * 24 * 60 * 60:  # 1 year or more
            return 30 * 24 * 60 * 60  # 1 month
        elif major_step >= 30 * 24 * 60 * 60:  # 1 month or more
            return 7 * 24 * 60 * 60  # 1 week
        elif major_step >= 7 * 24 * 60 * 60:  # 1 week or more
            return 24 * 60 * 60  # 1 day
        elif major_step >= 24 * 60 * 60:  # 1 day or more
            return 6 * 60 * 60  # 6 hours
        elif major_step >= 60 * 60:  # 1 hour or more
            return 15 * 60  # 15 minutes
        elif major_step >= 10 * 60:  # 10 minutes or more
            return 2 * 60  # 2 minutes
        elif major_step >= 60:  # 1 minute or more
            return 15  # 15 seconds
        elif major_step >= 10:  # 10 seconds or more
            return 2  # 2 seconds
        else:  # Less than 10 seconds
            return major_step / max(max_minor_steps, 2)