1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
|
# -*- coding: utf-8 -*-
"""
This serialiser will output an RDF Graph as a JSON-LD formatted document. See:
http://json-ld.org/
Example usage::
>>> from rdflib.plugin import register, Serializer
>>> register('json-ld', Serializer, 'rdflib_jsonld.serializer', 'JsonLDSerializer')
>>> from rdflib import Graph
>>> from rdflib import __version__ as rdflib_version
>>> testrdf = '''
... @prefix dcterms: <http://purl.org/dc/terms/> .
... <http://example.org/about>
... dcterms:title "Someone's Homepage"@en .
... '''
>>> g = Graph().parse(data=testrdf, format='n3')
>>> g_display = g.serialize(format='json-ld', indent=4)
>>> if rdflib_version < "6.0.0":
... # rdflib < 6.0.0 returns bytes when no
... # destination is provided.
... g_display = g_display.decode()
>>> print(g_display)
[
{
"@id": "http://example.org/about",
"http://purl.org/dc/terms/title": [
{
"@language": "en",
"@value": "Someone's Homepage"
}
]
}
]
"""
# NOTE: This code writes the entire JSON object into memory before serialising,
# but we should consider streaming the output to deal with arbitrarily large
# graphs.
import warnings
from rdflib.serializer import Serializer
from rdflib.graph import Graph
from rdflib.term import URIRef, Literal, BNode
from rdflib.namespace import RDF, XSD
from ._compat import unicode
from .context import Context, UNDEF
from .util import json
from .keys import CONTEXT, GRAPH, ID, VOCAB, LIST, SET, LANG
__all__ = ["JsonLDSerializer", "from_rdf"]
PLAIN_LITERAL_TYPES = set([XSD.boolean, XSD.integer, XSD.double, XSD.string])
class JsonLDSerializer(Serializer):
def __init__(self, store):
super(JsonLDSerializer, self).__init__(store)
def serialize(self, stream, base=None, encoding=None, **kwargs):
# TODO: docstring w. args and return value
encoding = encoding or "utf-8"
if encoding not in ("utf-8", "utf-16"):
warnings.warn(
"JSON should be encoded as unicode. "
+ "Given encoding was: %s" % encoding
)
context_data = kwargs.get("context")
use_native_types = (kwargs.get("use_native_types", False),)
use_rdf_type = kwargs.get("use_rdf_type", False)
auto_compact = kwargs.get("auto_compact", False)
indent = kwargs.get("indent", 2)
separators = kwargs.get("separators", (",", ": "))
sort_keys = kwargs.get("sort_keys", True)
ensure_ascii = kwargs.get("ensure_ascii", False)
obj = from_rdf(
self.store,
context_data,
base,
use_native_types,
use_rdf_type,
auto_compact=auto_compact,
)
data = json.dumps(
obj,
indent=indent,
separators=separators,
sort_keys=sort_keys,
ensure_ascii=ensure_ascii,
)
stream.write(data.encode(encoding, "replace"))
def from_rdf(
graph,
context_data=None,
base=None,
use_native_types=False,
use_rdf_type=False,
auto_compact=False,
startnode=None,
index=False,
):
# TODO: docstring w. args and return value
# TODO: support for index and startnode
if not context_data and auto_compact:
context_data = dict(
(pfx, unicode(ns))
for (pfx, ns) in graph.namespaces()
if pfx and unicode(ns) != "http://www.w3.org/XML/1998/namespace"
)
if isinstance(context_data, Context):
context = context_data
context_data = context.to_dict()
else:
context = Context(context_data, base=base)
converter = Converter(context, use_native_types, use_rdf_type)
result = converter.convert(graph)
if converter.context.active:
if isinstance(result, list):
result = {context.get_key(GRAPH): result}
result[CONTEXT] = context_data
return result
class Converter(object):
def __init__(self, context, use_native_types, use_rdf_type):
self.context = context
self.use_native_types = context.active or use_native_types
self.use_rdf_type = use_rdf_type
def convert(self, graph):
# TODO: bug in rdflib dataset parsing (nquads et al):
# plain triples end up in separate unnamed graphs (rdflib issue #436)
if graph.context_aware:
default_graph = Graph()
graphs = [default_graph]
for g in graph.contexts():
if isinstance(g.identifier, URIRef):
graphs.append(g)
else:
default_graph += g
else:
graphs = [graph]
context = self.context
objs = []
for g in graphs:
obj = {}
graphname = None
if isinstance(g.identifier, URIRef):
graphname = context.shrink_iri(g.identifier)
obj[context.id_key] = graphname
nodes = self.from_graph(g)
if not graphname and len(nodes) == 1:
obj.update(nodes[0])
else:
if not nodes:
continue
obj[context.graph_key] = nodes
if objs and objs[0].get(context.get_key(ID)) == graphname:
objs[0].update(obj)
else:
objs.append(obj)
if len(graphs) == 1 and len(objs) == 1 and not self.context.active:
default = objs[0]
items = default.get(context.graph_key)
if len(default) == 1 and items:
objs = items
elif len(objs) == 1 and self.context.active:
objs = objs[0]
return objs
def from_graph(self, graph):
nodemap = {}
for s in set(graph.subjects()):
## only iri:s and unreferenced (rest will be promoted to top if needed)
if isinstance(s, URIRef) or (
isinstance(s, BNode) and not any(graph.subjects(None, s))
):
self.process_subject(graph, s, nodemap)
return list(nodemap.values())
def process_subject(self, graph, s, nodemap):
if isinstance(s, URIRef):
node_id = self.context.shrink_iri(s)
elif isinstance(s, BNode):
node_id = s.n3()
else:
node_id = None
# used_as_object = any(graph.subjects(None, s))
if node_id in nodemap:
return None
node = {}
node[self.context.id_key] = node_id
nodemap[node_id] = node
for p, o in graph.predicate_objects(s):
self.add_to_node(graph, s, p, o, node, nodemap)
return node
def add_to_node(self, graph, s, p, o, s_node, nodemap):
context = self.context
if isinstance(o, Literal):
datatype = unicode(o.datatype) if o.datatype else None
language = o.language
term = context.find_term(unicode(p), datatype, language=language)
else:
containers = [LIST, None] if graph.value(o, RDF.first) else [None]
for container in containers:
for coercion in (ID, VOCAB, UNDEF):
term = context.find_term(unicode(p), coercion, container)
if term:
break
if term:
break
node = None
use_set = not context.active
if term:
p_key = context.to_symbol(term.id)
if term.type:
node = self.type_coerce(o, term.type)
elif term.language and o.language == term.language:
node = unicode(o)
elif context.language and (term.language is None and o.language is None):
node = unicode(o)
if term.container == SET:
use_set = True
elif term.container == LIST:
node = [
self.type_coerce(v, term.type)
or self.to_raw_value(graph, s, v, nodemap)
for v in self.to_collection(graph, o)
]
elif term.container == LANG and language:
value = s_node.setdefault(p_key, {})
values = value.get(language)
node = unicode(o)
if values:
if not isinstance(values, list):
value[language] = values = [values]
values.append(node)
else:
value[language] = node
return
else:
p_key = context.to_symbol(p)
# TODO: for coercing curies - quite clumsy; unify to_symbol and find_term?
key_term = context.terms.get(p_key)
if key_term and (key_term.type or key_term.container):
p_key = p
if not term and p == RDF.type and not self.use_rdf_type:
if isinstance(o, URIRef):
node = context.to_symbol(o)
p_key = context.type_key
if node is None:
node = self.to_raw_value(graph, s, o, nodemap)
value = s_node.get(p_key)
if value:
if not isinstance(value, list):
value = [value]
value.append(node)
elif use_set:
value = [node]
else:
value = node
s_node[p_key] = value
def type_coerce(self, o, coerce_type):
if coerce_type == ID:
if isinstance(o, URIRef):
return self.context.shrink_iri(o)
elif isinstance(o, BNode):
return o.n3()
else:
return o
elif coerce_type == VOCAB and isinstance(o, URIRef):
return self.context.to_symbol(o)
elif isinstance(o, Literal) and unicode(o.datatype) == coerce_type:
return o
else:
return None
def to_raw_value(self, graph, s, o, nodemap):
context = self.context
coll = self.to_collection(graph, o)
if coll is not None:
coll = [
self.to_raw_value(graph, s, lo, nodemap)
for lo in self.to_collection(graph, o)
]
return {context.list_key: coll}
elif isinstance(o, BNode):
embed = (
False # TODO: self.context.active or using startnode and only one ref
)
onode = self.process_subject(graph, o, nodemap)
if onode:
if embed and not any(s2 for s2 in graph.subjects(None, o) if s2 != s):
return onode
else:
nodemap[onode[context.id_key]] = onode
return {context.id_key: o.n3()}
elif isinstance(o, URIRef):
# TODO: embed if o != startnode (else reverse)
return {context.id_key: context.shrink_iri(o)}
elif isinstance(o, Literal):
# TODO: if compact
native = self.use_native_types and o.datatype in PLAIN_LITERAL_TYPES
if native:
v = o.toPython()
else:
v = unicode(o)
if o.datatype:
if native:
if self.context.active:
return v
else:
return {context.value_key: v}
return {
context.type_key: context.to_symbol(o.datatype),
context.value_key: v,
}
elif o.language and o.language != context.language:
return {context.lang_key: o.language, context.value_key: v}
elif not context.active or context.language and not o.language:
return {context.value_key: v}
else:
return v
def to_collection(self, graph, l):
if l != RDF.nil and not graph.value(l, RDF.first):
return None
list_nodes = []
chain = set([l])
while l:
if l == RDF.nil:
return list_nodes
if isinstance(l, URIRef):
return None
first, rest = None, None
for p, o in graph.predicate_objects(l):
if not first and p == RDF.first:
first = o
elif not rest and p == RDF.rest:
rest = o
elif p != RDF.type or o != RDF.List:
return None
list_nodes.append(first)
l = rest
if l in chain:
return None
chain.add(l)
|