File: dt_time_series.py

package info (click to toggle)
python-redis 6.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,432 kB
  • sloc: python: 60,318; sh: 179; makefile: 128
file content (517 lines) | stat: -rw-r--r-- 12,577 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
# EXAMPLE: time_series_tutorial
# HIDE_START
"""
Code samples for time series page:
    https://redis.io/docs/latest/develop/data-types/timeseries/
"""

import redis

r = redis.Redis(decode_responses=True)
# HIDE_END

# REMOVE_START
r.delete(
    "thermometer:1", "thermometer:2", "thermometer:3",
    "rg:1", "rg:2", "rg:3", "rg:4",
    "sensor3",
    "wind:1", "wind:2", "wind:3", "wind:4",
    "hyg:1", "hyg:compacted"
)
# REMOVE_END

# STEP_START create
res1 = r.ts().create("thermometer:1")
print(res1)  # >>> True

res2 = r.type("thermometer:1")
print(res2)  # >>> TSDB-TYPE

res3 = r.ts().info("thermometer:1")
print(res3)
# >>> {'rules': [], ... 'total_samples': 0, ...
# STEP_END
# REMOVE_START
assert res1 is True
assert res2 == "TSDB-TYPE"
assert res3["total_samples"] == 0
# REMOVE_END

# STEP_START create_retention
res4 = r.ts().add("thermometer:2", 1, 10.8, retention_msecs=100)
print(res4)  # >>> 1

res5 = r.ts().info("thermometer:2")
print(res5)
# >>> {'rules': [], ... 'retention_msecs': 100, ...
# STEP_END
# REMOVE_START
assert res4 == 1
assert res5["retention_msecs"] == 100
# REMOVE_END

# STEP_START create_labels
res6 = r.ts().create(
    "thermometer:3", 1, 10.4,
    labels={"location": "UK", "type": "Mercury"}
)
print(res6)  # >>> 1

res7 = r.ts().info("thermometer:3")
print(res7)
# >>> {'rules': [], ... 'labels': {'location': 'UK', 'type': 'Mercury'}, ...
# STEP_END
# REMOVE_START
assert res6 == 1
assert res7["labels"] == {"location": "UK", "type": "Mercury"}
# REMOVE_END

# STEP_START madd
res8 = r.ts().madd([
    ("thermometer:1", 1, 9.2),
    ("thermometer:1", 2, 9.9),
    ("thermometer:2", 2, 10.3)
])
print(res8)  # >>> [1, 2, 2]
# STEP_END
# REMOVE_START
assert res8 == [1, 2, 2]
# REMOVE_END

# STEP_START get
# The last recorded temperature for thermometer:2
# was 10.3 at time 2.
res9 = r.ts().get("thermometer:2")
print(res9)  # >>> (2, 10.3)
# STEP_END
# REMOVE_START
assert res9 == (2, 10.3)
# REMOVE_END

# STEP_START range
# Add 5 data points to a time series named "rg:1".
res10 = r.ts().create("rg:1")
print(res10)  # >>> True

res11 = r.ts().madd([
        ("rg:1", 0, 18),
        ("rg:1", 1, 14),
        ("rg:1", 2, 22),
        ("rg:1", 3, 18),
        ("rg:1", 4, 24),
])
print(res11)  # >>> [0, 1, 2, 3, 4]

# Retrieve all the data points in ascending order.
res12 = r.ts().range("rg:1", "-", "+")
print(res12)  # >>> [(0, 18.0), (1, 14.0), (2, 22.0), (3, 18.0), (4, 24.0)]

# Retrieve data points up to time 1 (inclusive).
res13 = r.ts().range("rg:1", "-", 1)
print(res13)  # >>> [(0, 18.0), (1, 14.0)]

# Retrieve data points from time 3 onwards.
res14 = r.ts().range("rg:1", 3, "+")
print(res14)  # >>> [(3, 18.0), (4, 24.0)]

# Retrieve all the data points in descending order.
res15 = r.ts().revrange("rg:1", "-", "+")
print(res15)  # >>> [(4, 24.0), (3, 18.0), (2, 22.0), (1, 14.0), (0, 18.0)]

# Retrieve data points up to time 1 (inclusive), but return them
# in descending order.
res16 = r.ts().revrange("rg:1", "-", 1)
print(res16)  # >>> [(1, 14.0), (0, 18.0)]
# STEP_END
# REMOVE_START
assert res10 is True
assert res11 == [0, 1, 2, 3, 4]
assert res12 == [(0, 18.0), (1, 14.0), (2, 22.0), (3, 18.0), (4, 24.0)]
assert res13 == [(0, 18.0), (1, 14.0)]
assert res14 == [(3, 18.0), (4, 24.0)]
assert res15 == [(4, 24.0), (3, 18.0), (2, 22.0), (1, 14.0), (0, 18.0)]
assert res16 == [(1, 14.0), (0, 18.0)]
# REMOVE_END

# STEP_START range_filter
res17 = r.ts().range("rg:1", "-", "+", filter_by_ts=[0, 2, 4])
print(res17)  # >>> [(0, 18.0), (2, 22.0), (4, 24.0)]

res18 = r.ts().revrange(
    "rg:1", "-", "+",
    filter_by_ts=[0, 2, 4],
    filter_by_min_value=20,
    filter_by_max_value=25,
)
print(res18)  # >>> [(4, 24.0), (2, 22.0)]

res19 = r.ts().revrange(
    "rg:1", "-", "+",
    filter_by_ts=[0, 2, 4],
    filter_by_min_value=22,
    filter_by_max_value=22,
    count=1,
)
print(res19)  # >>> [(2, 22.0)]
# STEP_END
# REMOVE_START
assert res17 == [(0, 18.0), (2, 22.0), (4, 24.0)]
assert res18 == [(4, 24.0), (2, 22.0)]
assert res19 == [(2, 22.0)]
# REMOVE_END

# STEP_START query_multi
# Create three new "rg:" time series (two in the US
# and one in the UK, with different units) and add some
# data points.
res20 = r.ts().create(
    "rg:2",
    labels={"location": "us", "unit": "cm"},
)
print(res20)  # >>> True

res21 = r.ts().create(
    "rg:3",
    labels={"location": "us", "unit": "in"},
)
print(res21)  # >>> True

res22 = r.ts().create(
    "rg:4",
    labels={"location": "uk", "unit": "mm"},
)
print(res22)  # >>> True

res23 = r.ts().madd([
        ("rg:2", 0, 1.8),
        ("rg:3", 0, 0.9),
        ("rg:4", 0, 25),
])
print(res23)  # >>> [0, 0, 0]

res24 = r.ts().madd([
        ("rg:2", 1, 2.1),
        ("rg:3", 1, 0.77),
        ("rg:4", 1, 18),
])
print(res24)  # >>> [1, 1, 1]

res25 = r.ts().madd([
        ("rg:2", 2, 2.3),
        ("rg:3", 2, 1.1),
        ("rg:4", 2, 21),
])
print(res25)  # >>> [2, 2, 2]

res26 = r.ts().madd([
        ("rg:2", 3, 1.9),
        ("rg:3", 3, 0.81),
        ("rg:4", 3, 19),
])
print(res26)  # >>> [3, 3, 3]

res27 = r.ts().madd([
        ("rg:2", 4, 1.78),
        ("rg:3", 4, 0.74),
        ("rg:4", 4, 23),
])
print(res27)  # >>> [4, 4, 4]

# Retrieve the last data point from each US time series. If
# you don't specify any labels, an empty array is returned
# for the labels.
res28 = r.ts().mget(["location=us"])
print(res28)  # >>> [{'rg:2': [{}, 4, 1.78]}, {'rg:3': [{}, 4, 0.74]}]

# Retrieve the same data points, but include the `unit`
# label in the results.
res29 = r.ts().mget(["location=us"], select_labels=["unit"])
print(res29)  # >>> [{'unit': 'cm'}, (4, 1.78), {'unit': 'in'}, (4, 0.74)]

# Retrieve data points up to time 2 (inclusive) from all
# time series that use millimeters as the unit. Include all
# labels in the results.
res30 = r.ts().mrange(
    "-", 2, filters=["unit=mm"], with_labels=True
)
print(res30)
# >>> [{'rg:4': [{'location': 'uk', 'unit': 'mm'}, [(0, 25.4),...

# Retrieve data points from time 1 to time 3 (inclusive) from
# all time series that use centimeters or millimeters as the unit,
# but only return the `location` label. Return the results
# in descending order of timestamp.
res31 = r.ts().mrevrange(
    1, 3, filters=["unit=(cm,mm)"], select_labels=["location"]
)
print(res31)
# >>> [[{'location': 'uk'}, (3, 19.0), (2, 21.0), (1, 18.0)],...
# STEP_END
# REMOVE_START
assert res20 is True
assert res21 is True
assert res22 is True
assert res23 == [0, 0, 0]
assert res24 == [1, 1, 1]
assert res25 == [2, 2, 2]
assert res26 == [3, 3, 3]
assert res27 == [4, 4, 4]
assert res28 == [{'rg:2': [{}, 4, 1.78]}, {'rg:3': [{}, 4, 0.74]}]
assert res29 == [
    {'rg:2': [{'unit': 'cm'}, 4, 1.78]},
    {'rg:3': [{'unit': 'in'}, 4, 0.74]}
]
assert res30 == [
    {
        'rg:4': [
            {'location': 'uk', 'unit': 'mm'},
            [(0, 25), (1, 18.0), (2, 21.0)]
        ]
    }
]
assert res31 == [
    {'rg:2': [{'location': 'us'}, [(3, 1.9), (2, 2.3), (1, 2.1)]]},
    {'rg:4': [{'location': 'uk'}, [(3, 19.0), (2, 21.0), (1, 18.0)]]}
]
# REMOVE_END

# STEP_START agg
res32 = r.ts().range(
    "rg:2", "-", "+",
    aggregation_type="avg",
    bucket_size_msec=2
)
print(res32)
# >>> [(0, 1.9500000000000002), (2, 2.0999999999999996), (4, 1.78)]
# STEP_END
# REMOVE_START
assert res32 == [
    (0, 1.9500000000000002), (2, 2.0999999999999996),
    (4, 1.78)
]
# REMOVE_END

# STEP_START agg_bucket
res33 = r.ts().create("sensor3")
print(res33)  # >>> True

res34 = r.ts().madd([
    ("sensor3", 10, 1000),
    ("sensor3", 20, 2000),
    ("sensor3", 30, 3000),
    ("sensor3", 40, 4000),
    ("sensor3", 50, 5000),
    ("sensor3", 60, 6000),
    ("sensor3", 70, 7000),
])
print(res34)  # >>> [10, 20, 30, 40, 50, 60, 70]

res35 = r.ts().range(
    "sensor3", 10, 70,
    aggregation_type="min",
    bucket_size_msec=25
)
print(res35)
# >>> [(0, 1000.0), (25, 3000.0), (50, 5000.0)]
# STEP_END
# REMOVE_START
assert res33 is True
assert res34 == [10, 20, 30, 40, 50, 60, 70]
assert res35 == [(0, 1000.0), (25, 3000.0), (50, 5000.0)]
# REMOVE_END

# STEP_START agg_align
res36 = r.ts().range(
    "sensor3", 10, 70,
    aggregation_type="min",
    bucket_size_msec=25,
    align="START"
)
print(res36)
# >>> [(10, 1000.0), (35, 4000.0), (60, 6000.0)]
# STEP_END
# REMOVE_START
assert res36 == [(10, 1000.0), (35, 4000.0), (60, 6000.0)]
# REMOVE_END

# STEP_START agg_multi
res37 = r.ts().create(
    "wind:1",
    labels={"country": "uk"}
)
print(res37)  # >>> True

res38 = r.ts().create(
    "wind:2",
    labels={"country": "uk"}
)
print(res38)  # >>> True

res39 = r.ts().create(
    "wind:3",
    labels={"country": "us"}
)
print(res39)  # >>> True

res40 = r.ts().create(
    "wind:4",
    labels={"country": "us"}
)
print(res40)  # >>> True

res41 = r.ts().madd([
        ("wind:1", 1, 12),
        ("wind:2", 1, 18),
        ("wind:3", 1, 5),
        ("wind:4", 1, 20),
])
print(res41)  # >>> [1, 1, 1, 1]

res42 = r.ts().madd([
        ("wind:1", 2, 14),
        ("wind:2", 2, 21),
        ("wind:3", 2, 4),
        ("wind:4", 2, 25),
])
print(res42)  # >>> [2, 2, 2, 2]

res43 = r.ts().madd([
        ("wind:1", 3, 10),
        ("wind:2", 3, 24),
        ("wind:3", 3, 8),
        ("wind:4", 3, 18),
])
print(res43)  # >>> [3, 3, 3, 3]

# The result pairs contain the timestamp and the maximum sample value
# for the country at that timestamp.
res44 = r.ts().mrange(
    "-", "+",
    filters=["country=(us,uk)"],
    groupby="country",
    reduce="max"
)
print(res44)
# >>> [{'country=uk': [{}, [(1, 18.0), (2, 21.0), (3, 24.0)]]}, ...

# The result pairs contain the timestamp and the average sample value
# for the country at that timestamp.
res45 = r.ts().mrange(
    "-", "+",
    filters=["country=(us,uk)"],
    groupby="country",
    reduce="avg"
)
print(res45)
# >>> [{'country=uk': [{}, [(1, 15.0), (2, 17.5), (3, 17.0)]]}, ...
# STEP_END
# REMOVE_START
assert res37 is True
assert res38 is True
assert res39 is True
assert res40 is True
assert res41 == [1, 1, 1, 1]
assert res42 == [2, 2, 2, 2]
assert res43 == [3, 3, 3, 3]
assert res44 == [
    {'country=uk': [{}, [(1, 18.0), (2, 21.0), (3, 24.0)]]},
    {'country=us': [{}, [(1, 20.0), (2, 25.0), (3, 18.0)]]}
]
assert res45 == [
    {'country=uk': [{}, [(1, 15.0), (2, 17.5), (3, 17.0)]]},
    {'country=us': [{}, [(1, 12.5), (2, 14.5), (3, 13.0)]]}
]
# REMOVE_END

# STEP_START create_compaction
res45 = r.ts().create("hyg:1")
print(res45)  # >>> True

res46 = r.ts().create("hyg:compacted")
print(res46)  # >>> True

res47 = r.ts().createrule("hyg:1", "hyg:compacted", "min", 3)
print(res47)  # >>> True

res48 = r.ts().info("hyg:1")
print(res48.rules)
# >>> [['hyg:compacted', 3, 'MIN', 0]]

res49 = r.ts().info("hyg:compacted")
print(res49.source_key)  # >>> 'hyg:1'
# STEP_END
# REMOVE_START
assert res45 is True
assert res46 is True
assert res47 is True
assert res48.rules == [['hyg:compacted', 3, 'MIN', 0]]
assert res49.source_key == 'hyg:1'
# REMOVE_END

# STEP_START comp_add
res50 = r.ts().madd([
    ("hyg:1", 0, 75),
    ("hyg:1", 1, 77),
    ("hyg:1", 2, 78),
])
print(res50)  # >>> [0, 1, 2]

res51 = r.ts().range("hyg:compacted", "-", "+")
print(res51)  # >>> []

res52 = r.ts().add("hyg:1", 3, 79)
print(res52)  # >>> 3

res53 = r.ts().range("hyg:compacted", "-", "+")
print(res53)  # >>> [(0, 75.0)]
# STEP_END
# REMOVE_START
assert res50 == [0, 1, 2]
assert res51 == []
assert res52 == 3
assert res53 == [(0, 75.0)]
# REMOVE_END

# STEP_START del
res54 = r.ts().info("thermometer:1")
print(res54.total_samples)  # >>> 2
print(res54.first_timestamp)  # >>> 1
print(res54.last_timestamp)  # >>> 2

res55 = r.ts().add("thermometer:1", 3, 9.7)
print(res55)  # >>> 3

res56 = r.ts().info("thermometer:1")
print(res56.total_samples)  # >>> 3
print(res56.first_timestamp)  # >>> 1
print(res56.last_timestamp)  # >>> 3

res57 = r.ts().delete("thermometer:1", 1, 2)
print(res57)  # >>> 2

res58 = r.ts().info("thermometer:1")
print(res58.total_samples)  # >>> 1
print(res58.first_timestamp)  # >>> 3
print(res58.last_timestamp)  # >>> 3

res59 = r.ts().delete("thermometer:1", 3, 3)
print(res59)  # >>> 1

res60 = r.ts().info("thermometer:1")
print(res60.total_samples)  # >>> 0
# STEP_END
# REMOVE_START
assert res54.total_samples == 2
assert res54.first_timestamp == 1
assert res54.last_timestamp == 2
assert res55 == 3
assert res56.total_samples == 3
assert res56.first_timestamp == 1
assert res56.last_timestamp == 3
assert res57 == 2
assert res58.total_samples == 1
assert res58.first_timestamp == 3
assert res58.last_timestamp == 3
assert res59 == 1
assert res60.total_samples == 0
# REMOVE_END