1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
# EXAMPLE: home_prob_dts
"""
Probabilistic data type examples:
https://redis.io/docs/latest/develop/connect/clients/python/redis-py/prob
"""
# HIDE_START
import redis
r = redis.Redis(decode_responses=True)
# HIDE_END
# REMOVE_START
r.delete(
"recorded_users", "other_users",
"group:1", "group:2", "both_groups",
"items_sold",
"male_heights", "female_heights", "all_heights",
"top_3_songs"
)
# REMOVE_END
# STEP_START bloom
res1 = r.bf().madd("recorded_users", "andy", "cameron", "david", "michelle")
print(res1) # >>> [1, 1, 1, 1]
res2 = r.bf().exists("recorded_users", "cameron")
print(res2) # >>> 1
res3 = r.bf().exists("recorded_users", "kaitlyn")
print(res3) # >>> 0
# STEP_END
# REMOVE_START
assert res1 == [1, 1, 1, 1]
assert res2 == 1
assert res3 == 0
# REMOVE_END
# STEP_START cuckoo
res4 = r.cf().add("other_users", "paolo")
print(res4) # >>> 1
res5 = r.cf().add("other_users", "kaitlyn")
print(res5) # >>> 1
res6 = r.cf().add("other_users", "rachel")
print(res6) # >>> 1
res7 = r.cf().mexists("other_users", "paolo", "rachel", "andy")
print(res7) # >>> [1, 1, 0]
res8 = r.cf().delete("other_users", "paolo")
print(res8) # >>> 1
res9 = r.cf().exists("other_users", "paolo")
print(res9) # >>> 0
# STEP_END
# REMOVE_START
assert res4 == 1
assert res5 == 1
assert res6 == 1
assert res7 == [1, 1, 0]
assert res8 == 1
assert res9 == 0
# REMOVE_END
# STEP_START hyperloglog
res10 = r.pfadd("group:1", "andy", "cameron", "david")
print(res10) # >>> 1
res11 = r.pfcount("group:1")
print(res11) # >>> 3
res12 = r.pfadd("group:2", "kaitlyn", "michelle", "paolo", "rachel")
print(res12) # >>> 1
res13 = r.pfcount("group:2")
print(res13) # >>> 4
res14 = r.pfmerge("both_groups", "group:1", "group:2")
print(res14) # >>> True
res15 = r.pfcount("both_groups")
print(res15) # >>> 7
# STEP_END
# REMOVE_START
assert res10 == 1
assert res11 == 3
assert res12 == 1
assert res13 == 4
assert res14
assert res15 == 7
# REMOVE_END
# STEP_START cms
# Specify that you want to keep the counts within 0.01
# (1%) of the true value with a 0.005 (0.5%) chance
# of going outside this limit.
res16 = r.cms().initbyprob("items_sold", 0.01, 0.005)
print(res16) # >>> True
# The parameters for `incrby()` are two lists. The count
# for each item in the first list is incremented by the
# value at the same index in the second list.
res17 = r.cms().incrby(
"items_sold",
["bread", "tea", "coffee", "beer"], # Items sold
[300, 200, 200, 100]
)
print(res17) # >>> [300, 200, 200, 100]
res18 = r.cms().incrby(
"items_sold",
["bread", "coffee"],
[100, 150]
)
print(res18) # >>> [400, 350]
res19 = r.cms().query("items_sold", "bread", "tea", "coffee", "beer")
print(res19) # >>> [400, 200, 350, 100]
# STEP_END
# REMOVE_START
assert res16
assert res17 == [300, 200, 200, 100]
assert res18 == [400, 350]
assert res19 == [400, 200, 350, 100]
# REMOVE_END
# STEP_START tdigest
res20 = r.tdigest().create("male_heights")
print(res20) # >>> True
res21 = r.tdigest().add(
"male_heights",
[175.5, 181, 160.8, 152, 177, 196, 164]
)
print(res21) # >>> OK
res22 = r.tdigest().min("male_heights")
print(res22) # >>> 152.0
res23 = r.tdigest().max("male_heights")
print(res23) # >>> 196.0
res24 = r.tdigest().quantile("male_heights", 0.75)
print(res24) # >>> 181
# Note that the CDF value for 181 is not exactly
# 0.75. Both values are estimates.
res25 = r.tdigest().cdf("male_heights", 181)
print(res25) # >>> [0.7857142857142857]
res26 = r.tdigest().create("female_heights")
print(res26) # >>> True
res27 = r.tdigest().add(
"female_heights",
[155.5, 161, 168.5, 170, 157.5, 163, 171]
)
print(res27) # >>> OK
res28 = r.tdigest().quantile("female_heights", 0.75)
print(res28) # >>> [170]
res29 = r.tdigest().merge(
"all_heights", 2, "male_heights", "female_heights"
)
print(res29) # >>> OK
res30 = r.tdigest().quantile("all_heights", 0.75)
print(res30) # >>> [175.5]
# STEP_END
# REMOVE_START
assert res20
assert res21 == "OK"
assert res22 == 152.0
assert res23 == 196.0
assert res24 == [181]
assert res25 == [0.7857142857142857]
assert res26
assert res27 == "OK"
assert res28 == [170]
assert res29 == "OK"
assert res30 == [175.5]
# REMOVE_END
# STEP_START topk
# The `reserve()` method creates the Top-K object with
# the given key. The parameters are the number of items
# in the ranking and values for `width`, `depth`, and
# `decay`, described in the Top-K reference page.
res31 = r.topk().reserve("top_3_songs", 3, 7, 8, 0.9)
print(res31) # >>> True
# The parameters for `incrby()` are two lists. The count
# for each item in the first list is incremented by the
# value at the same index in the second list.
res32 = r.topk().incrby(
"top_3_songs",
[
"Starfish Trooper",
"Only one more time",
"Rock me, Handel",
"How will anyone know?",
"Average lover",
"Road to everywhere"
],
[
3000,
1850,
1325,
3890,
4098,
770
]
)
print(res32)
# >>> [None, None, None, 'Rock me, Handel', 'Only one more time', None]
res33 = r.topk().list("top_3_songs")
print(res33)
# >>> ['Average lover', 'How will anyone know?', 'Starfish Trooper']
res34 = r.topk().query(
"top_3_songs", "Starfish Trooper", "Road to everywhere"
)
print(res34) # >>> [1, 0]
# STEP_END
# REMOVE_START
assert res31
assert res32 == [None, None, None, 'Rock me, Handel', 'Only one more time', None]
assert res33 == ['Average lover', 'How will anyone know?', 'Starfish Trooper']
assert res34 == [1, 0]
# REMOVE_END
|