File: fluid_interface.py

package info (click to toggle)
python-refurb 1.27.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,700 kB
  • sloc: python: 9,468; makefile: 40; sh: 6
file content (163 lines) | stat: -rw-r--r-- 4,993 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from dataclasses import dataclass

from mypy.nodes import (
    AssignmentStmt,
    CallExpr,
    Expression,
    FuncDef,
    MemberExpr,
    NameExpr,
    ReturnStmt,
    Statement,
)

from refurb.checks.common import ReadCountVisitor, check_block_like
from refurb.error import Error
from refurb.visitor import TraverserVisitor


@dataclass
class ErrorInfo(Error):
    r"""
    When an API has a Fluent Interface (the ability to chain multiple calls together), you should
    chain those calls instead of repeatedly assigning and using the value.
    Sometimes a return statement can be written more succinctly:

    Bad:

    ```python
    def get_tensors(device: str) -> torch.Tensor:
        t1 = torch.ones(2, 1)
        t2 = t1.long()
        t3 = t2.to(device)
        return t3

    def process(file_name: str):
        common_columns = ["col1_renamed", "col2_renamed", "custom_col"]
        df = spark.read.parquet(file_name)
        df = df \
            .withColumnRenamed('col1', 'col1_renamed') \
            .withColumnRenamed('col2', 'col2_renamed')
        df = df \
            .select(common_columns) \
            .withColumn('service_type', F.lit('green'))
        return df
    ```

    Good:

    ```python
    def get_tensors(device: str) -> torch.Tensor:
        t3 = (
            torch.ones(2, 1)
            .long()
            .to(device)
        )
        return t3

    def process(file_name: str):
        common_columns = ["col1_renamed", "col2_renamed", "custom_col"]
        df = (
            spark.read.parquet(file_name)
            .withColumnRenamed('col1', 'col1_renamed')
            .withColumnRenamed('col2', 'col2_renamed')
            .select(common_columns)
            .withColumn('service_type', F.lit('green'))
        )
        return df
    ```
    """

    name = "use-fluid-interface"
    code = 184
    categories = ("readability",)


def check(node: FuncDef, errors: list[Error]) -> None:
    check_block_like(check_stmts, node.body, errors)


def check_call(node: Expression, name: str | None = None) -> bool:
    match node:
        # Single chain
        case CallExpr(callee=MemberExpr(expr=NameExpr(name=x), name=_)):
            if name is None or name == x:
                # Exclude other references
                x_expr = NameExpr(x)
                x_expr.fullname = x
                visitor = ReadCountVisitor(x_expr)
                visitor.accept(node)
                return visitor.read_count == 1
            return False

        # Nested
        case CallExpr(callee=MemberExpr(expr=call_node, name=_)):
            return check_call(call_node, name=name)

    return False


class NameReferenceVisitor(TraverserVisitor):
    name: NameExpr
    referenced: bool

    def __init__(self, name: NameExpr, stmt: Statement | None = None) -> None:
        super().__init__()
        self.name = name
        self.stmt = stmt
        self.referenced = False

    def visit_name_expr(self, node: NameExpr) -> None:
        if not self.referenced and node.fullname == self.name.fullname:
            self.referenced = True


def check_stmts(stmts: list[Statement], errors: list[Error]) -> None:
    last = ""
    visitors: list[NameReferenceVisitor] = []

    for stmt in stmts:
        for visitor in visitors:
            visitor.accept(stmt)
        # No need to track referenced variables anymore
        visitors = [visitor for visitor in visitors if not visitor.referenced]

        match stmt:
            case AssignmentStmt(lvalues=[NameExpr(name=name)], rvalue=rvalue):
                if last and check_call(rvalue, name=last):
                    if f"{last}'" == name:
                        errors.append(
                            ErrorInfo.from_node(
                                stmt,
                                "Assignment statement should be chained",
                            )
                        )
                    else:
                        # We need to ensure that the variable is not referenced somewhere else
                        name_expr = NameExpr(name=last)
                        name_expr.fullname = last
                        visitors.append(NameReferenceVisitor(name_expr, stmt))

                last = name if name != "_" else ""
            case ReturnStmt(expr=rvalue):
                if last and rvalue is not None and check_call(rvalue, name=last):
                    errors.append(
                        ErrorInfo.from_node(
                            stmt,
                            "Return statement should be chained",
                        )
                    )
            case _:
                last = ""

    # Ensure that variables are not referenced
    errors.extend(
        [
            ErrorInfo.from_node(
                visitor.stmt,
                "Assignment statement should be chained",
            )
            for visitor in visitors
            if not visitor.referenced and visitor.stmt is not None
        ]
    )