1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
|
# -*- coding: utf-8 -*-
# This script builds the Unicode tables used by the regex module.
#
# It downloads the data from the Unicode website, saving it locally, and then
# calculates the minimum size of the tables.
#
# Finally, it creates 2 code files, namely "_regex_unicode.h" and
# "_regex_unicode.c".
#
# Various parameters are stored in a local "shelve" file in order to reduce
# the amount of recalculation.
#
# This script is written in Python 3.
import os
import shelve
import sys
import shutil
from collections import defaultdict
from contextlib import closing
from urllib.parse import urljoin, urlparse
from urllib.request import urlretrieve
this_folder = os.path.dirname(__file__)
# The location of the Unicode data folder.
unicode_folder = os.path.join(this_folder, "Unicode")
# The location of the C sources for the regex engine.
c_folder = os.path.join(this_folder, "regex")
# The paths of the source files to be generated.
h_path = os.path.join(c_folder, "_regex_unicode.h")
c_path = os.path.join(c_folder, "_regex_unicode.c")
properties_path = os.path.join(this_folder, "UnicodeProperties.txt")
# The paths of the C source files.
c_header_path = os.path.join(c_folder, "_regex_unicode.h")
c_source_path = os.path.join(c_folder, "_regex_unicode.c")
# The path of the shelve file.
shelf_path = os.path.splitext(__file__)[0] + ".shf"
# The number of columns in each table.
COLUMNS = 16
# The maximum number of codepoints.
NUM_CODEPOINTS = 0x110000
# The maximum depth of the multi-stage tables.
MAX_STAGES = 5
# Whether to force an update of the Unicode data.
#
# Data is downloaded if needed, but if the Unicode data has been updated on
# the website then you need to force an update.
FORCE_UPDATE = False
# Whether to force recalculation of the smallest table size.
FORCE_RECALC = False
# Whether to count the number of codepoints as a check.
COUNT_CODEPOINTS = False
# If we update then we must recalculate.
if FORCE_UPDATE:
FORCE_RECALC = True
# Ensure that the Unicode data folder exists.
try:
os.mkdir(unicode_folder)
except OSError:
pass
# If the maximum number of stages has changed, then force recalculation.
with closing(shelve.open(shelf_path, writeback=True)) as shelf:
if shelf.get("MAXSTAGES") != MAX_STAGES:
shelf["MAXSTAGES"] = MAX_STAGES
FORCE_RECALC = True
if FORCE_RECALC:
try:
del shelf["CASEFOLDING"]
except KeyError:
pass
# Redefine "print" so that it flushes.
real_print = print
def print(*args, **kwargs):
real_print(*args, **kwargs)
sys.stdout.flush()
class UnicodeDataError(Exception):
pass
def determine_data_type(min_value, max_value):
"Determines the smallest C data type which can store values in a range."
# 1 byte, unsigned and signed.
if 0 <= min_value <= max_value <= 0xFF:
return "RE_UINT8", 1
if -0x80 <= min_value <= max_value <= 0x7F:
return "RE_INT8", 1
# 2 bytes, unsigned and signed.
if 0 <= min_value <= max_value <= 0xFFFF:
return "RE_UINT16", 2
if -0x8000 <= min_value <= max_value <= 0x7FFF:
return "RE_INT16", 2
# 4 bytes, unsigned and signed.
if 0 <= min_value <= max_value <= 0xFFFFFFFF:
return "RE_UINT32", 4
if -0x80000000 <= min_value <= max_value <= 0x7FFFFFFF:
return "RE_INT32", 4
raise ValueError("value range too big for 32 bits")
def smallest_data_type(min_value, max_value):
"""Determines the smallest integer data type required to store all of the
values in a range.
"""
return determine_data_type(min_value, max_value)[0]
def smallest_bytesize(min_value, max_value):
"""Determines the minimum number of bytes required to store all of the
values in a range.
"""
return determine_data_type(min_value, max_value)[1]
def product(numbers):
"""Calculates the product of a series of numbers."""
if not product:
raise ValueError("product of empty sequence")
result = 1
for n in numbers:
result *= n
return result
def mul_to_shift(number):
"Converts a multiplier into a shift."
shift = number.bit_length() - 1
if shift < 0 or (1 << shift) != number:
raise ValueError("can't convert multiplier into shift")
return shift
class MultistageTable:
"A multi-stage table."
def __init__(self, block_sizes, stages, binary):
self.block_sizes = block_sizes
self.stages = stages
self.binary = binary
self.num_stages = len(self.block_sizes) + 1
# How many bytes of storage are needed for this table?
self.bytesize = 0
for stage in self.stages[ : -1]:
self.bytesize += (smallest_bytesize(min(stage), max(stage)) *
len(stage))
if binary:
self.bytesize += len(self.stages[-1]) // 8
else:
self.bytesize += smallest_bytesize(min(self.stages[-1]),
max(self.stages[-1])) * len(self.stages[-1])
# Calculate the block-size products for lookup.
self._size_products = []
for stage in range(self.num_stages - 1):
self._size_products.append(product(self.block_sizes[stage : ]))
class PropertyValue:
"A property value."
def __init__(self, name, id):
self.name = name
self.id = id
self.aliases = set()
def use_pref_name(self):
"""Uses better names for the properties and values if the current one
is poor.
"""
self.name, self.aliases = pick_pref_name(self.name, self.aliases)
class Property:
"A Unicode property."
def __init__(self, name, entries, value_dict):
self.name = name
self.entries = entries
self._value_list = []
self._value_dict = {}
for name, value in sorted(value_dict.items(), key=lambda pair:
pair[1]):
val = PropertyValue(name, value)
self._value_list.append(val)
self._value_dict[name.upper()] = val
self.binary = len(self._value_dict.values()) == 2
self.aliases = set()
def add(self, val):
"Adds a value."
# Make it case-insensitive.
upper_name = val.name.upper()
if upper_name in self._value_dict:
raise KeyError("duplicate value name: {}".format(val.name))
self._value_list.append(val)
self._value_dict[upper_name] = val
def use_pref_name(self):
"""Use a better name for a property or value if the current one is
poor.
"""
self.name, self.aliases = pick_pref_name(self.name, self.aliases)
def make_binary_property(self):
"Makes this property a binary property."
if self._value_list:
raise UnicodeDataError("property '{}' already has values".format(self.name))
binary_values = [
("No", 0, {"N", "False", "F"}),
("Yes", 1, {"Y", "True", "T"})
]
for name, v, aliases in binary_values:
val = PropertyValue(name, v)
val.aliases |= aliases
self._value_list.append(val)
self._value_dict[name.upper()] = val
self.binary = True
def generate_code(self, h_file, c_file, info):
"Generates the code for a property."
# Build the tables.
self._build_tables()
print("Generating code for {}".format(self.name))
table = self.table
# Write the property tables.
c_file.write("""
/* {name}. */
""".format(name=self.name))
self.generate_tables(c_file)
# Write the lookup function.
prototype = "RE_UINT32 re_get_{name}(RE_UINT32 ch)".format(name=self.name.lower())
h_file.write("{prototype};\n".format(prototype=prototype))
c_file.write("""
{prototype} {{
""".format(prototype=prototype))
self._generate_locals(c_file)
c_file.write("\n")
self._generate_lookup(c_file)
c_file.write("""
return value;
}
""")
def generate_tables(self, c_file):
table = self.table
for stage in range(table.num_stages):
# The contents of this table.
entries = table.stages[stage]
# What data type should we use for the entries?
if self.binary and stage == table.num_stages - 1:
data_type = "RE_UINT8"
entries = self._pack_to_bitflags(entries)
else:
data_type = smallest_data_type(min(entries), max(entries))
# The entries will be stored in an array.
c_file.write("""
static {data_type} re_{name}_stage_{stage}[] = {{
""".format(data_type=data_type, name=self.name.lower(), stage=stage + 1))
# Write the entries, nicely aligned in columns.
entries = ["{},".format(e) for e in entries]
entry_width = max(len(e) for e in entries)
entries = [e.rjust(entry_width) for e in entries]
for start in range(0, len(entries), COLUMNS):
c_file.write(" {}\n".format(" ".join(entries[start : start +
COLUMNS])))
c_file.write("};\n")
# Write how much storage will be used by all of the tables.
c_file.write("""
/* {name}: {bytesize} bytes. */
""".format(name=self.name, bytesize=table.bytesize))
def _pack_to_bitflags(self, entries):
entries = tuple(entries)
new_entries = []
for start in range(0, len(entries), 8):
new_entries.append(bitflag_dict[entries[start : start + 8]])
return new_entries
def _generate_locals(self, c_file):
c_file.write("""\
RE_UINT32 code;
RE_UINT32 f;
RE_UINT32 pos;
RE_UINT32 value;
""")
def _generate_lookup(self, c_file):
table = self.table
name = self.name.lower()
# Convert the block sizes into shift values.
shifts = [mul_to_shift(size) for size in table.block_sizes]
c_file.write("""\
f = ch >> {field_shift};
code = ch ^ (f << {field_shift});
pos = (RE_UINT32)re_{name}_stage_1[f] << {block_shift};
""".format(field_shift=sum(shifts), name=name, block_shift=shifts[0]))
for stage in range(1, table.num_stages - 1):
c_file.write("""\
f = code >> {field_shift};
code ^= f << {field_shift};
pos = (RE_UINT32)re_{name}_stage_{stage}[pos + f] << {block_shift};
""".format(field_shift=sum(shifts[stage : ]), name=name, stage=stage + 1,
block_shift=shifts[stage]))
# If it's a binary property, we're using bitflags.
if self.binary:
c_file.write("""\
pos += code;
value = (re_{name}_stage_{stage}[pos >> 3] >> (pos & 0x7)) & 0x1;
""".format(name=self.name.lower(), stage=table.num_stages))
else:
c_file.write("""\
value = re_{name}_stage_{stage}[pos + code];
""".format(name=self.name.lower(), stage=table.num_stages))
def get(self, name, default=None):
try:
return self.__getitem__(name)
except KeyError:
return default
def __len__(self):
return len(self._value_list)
def __getitem__(self, name):
# Make it case-insensitive.
upper_name = name.upper()
val = self._value_dict.get(upper_name)
if not val:
# Can't find a value with that name, so collect the aliases and try
# again.
for val in self._value_list:
for alias in {val.name} | val.aliases:
self._value_dict[alias.upper()] = val
val = self._value_dict.get(upper_name)
if not val:
raise KeyError(name)
return val
def __iter__(self):
for val in self._value_list:
yield val
def _build_tables(self):
"Builds the multi-stage tables."
stored_name = reduce_name(self.name)
# Do we already know the best block sizes?
shelf = shelve.open(shelf_path, writeback=True)
if FORCE_RECALC:
# Force calculation of the block sizes and build the tables.
table = self._build_smallest_table()
else:
try:
# What are the best block sizes?
block_sizes = shelf[stored_name]["block_sizes"]
# Build the tables.
table = self._build_multistage_table(block_sizes)
except KeyError:
# Something isn't known, so calculate the best block sizes and
# build the tables.
table = self._build_smallest_table()
# Save the info.
shelf[stored_name] = {}
shelf[stored_name]["block_sizes"] = table.block_sizes
shelf.close()
self.table = table
def _build_smallest_table(self):
"""Calculates the block sizes to give the smallest storage requirement
and builds the multi-stage table.
"""
print("Determining smallest storage for {}".format(self.name))
# Initialise with a large value.
best_block_sizes, smallest_bytesize = None, len(self.entries) * 4
# Try different numbers and sizes of blocks.
for block_sizes, bytesize in self._table_sizes(self.entries, 1,
self.binary):
print("Block sizes are {}, bytesize is {}".format(block_sizes,
bytesize))
if bytesize < smallest_bytesize:
best_block_sizes, smallest_bytesize = block_sizes, bytesize
print("Smallest for {} has block sizes {} and bytesize {}".format(self.name,
best_block_sizes, smallest_bytesize))
return self._build_multistage_table(best_block_sizes)
def _table_sizes(self, entries, num_stages, binary):
"""Yields different numbers and sizes of blocks, up to MAX_STAGES.
All the sizes are powers of 2 and for a binary property the final block
size is at least 8 because the final stage of the table will be using
bitflags.
"""
# What if this is the top stage?
if binary:
bytesize = len(entries) // 8
else:
bytesize = (smallest_bytesize(min(entries), max(entries)) *
len(entries))
yield [], bytesize
if num_stages >= MAX_STAGES:
return
entries = tuple(entries)
# Initialise the block size and double it on each iteration. Usually an
# index entry is 1 byte, so a data block should be at least 2 bytes.
size = 16 if binary else 2
# There should be at least 2 blocks.
while size * 2 <= len(entries) and len(entries) % size == 0:
# Group the entries into blocks.
indexes = []
block_dict = {}
for start in range(0, len(entries), size):
block = entries[start : start + size]
indexes.append(block_dict.setdefault(block, len(block_dict)))
# Collect all the blocks.
blocks = []
for block in sorted(block_dict, key=lambda block:
block_dict[block]):
blocks.extend(block)
# How much storage will the blocks stage need?
if binary:
block_bytesize = len(blocks) // 8
else:
block_bytesize = (smallest_bytesize(min(blocks), max(blocks)) *
len(blocks))
# Yield the higher stages for the indexes.
for block_sizes, total_bytesize in self._table_sizes(indexes,
num_stages + 1, False):
yield block_sizes + [size], total_bytesize + block_bytesize
# Next size up.
size *= 2
def _build_multistage_table(self, block_sizes):
"Builds a multi-stage table."
if product(block_sizes) > len(self.entries):
raise UnicodeDataError("product of block sizes greater than number of entries")
# Build the stages from the bottom one up.
entries = self.entries
stages = []
for block_size in reversed(block_sizes):
entries = tuple(entries)
# Group the entries into blocks.
block_dict = {}
indexes = []
for start in range(0, len(entries), block_size):
block = entries[start : start + block_size]
indexes.append(block_dict.setdefault(block, len(block_dict)))
# Collect all the blocks.
blocks = []
for block in sorted(block_dict, key=lambda block:
block_dict[block]):
blocks.extend(block)
# We have a new stage.
stages.append(blocks)
# Prepare for the next higher stage.
entries = indexes
# We have the top stage.
stages.append(entries)
# Put the stages into the correct order (top-down).
stages.reverse()
return MultistageTable(block_sizes, stages, self.binary)
class AllCasesProperty(Property):
"All Unicode cases."
def __init__(self, name, entries, value_dict):
self.name = name
self.entries = entries
self._value_list = []
self._value_dict = {}
for name, value in sorted(value_dict.items(), key=lambda pair:
pair[1]):
val = PropertyValue(name, value)
self._value_list.append(val)
self._value_dict[name] = val
self.binary = False
self.aliases = set()
# What data type should we use for the cases entries?
rows = [list(val.name) for val in self._value_list]
data = [e for r in rows for e in r]
self.case_data_type = smallest_data_type(min(data), max(data))
def generate_code(self, h_file, c_file, info):
"Generates the code for a property."
print("Generating code for {}".format(self.name))
# Build the tables.
self._build_tables()
# Write the all-cases tables.
c_file.write("""
/* {name}. */
""".format(name=self.name))
self.generate_tables(c_file)
# What data type should we use for the cases entries?
rows = [list(val.name) for val in self._value_list]
data = [e for r in rows for e in r[1 : ]]
data_type, data_size = determine_data_type(min(data), max(data))
self.case_data_type = data_type
# Calculate the size of the struct.
entry_size = data_size * (info["max_cases"] - 1)
# Pad the cases entries to the same length.
max_len = max(len(r) for r in rows)
padding = [0] * (max_len - 1)
rows = [(r + padding)[ : max_len] for r in rows]
# Write the entries, nicely aligned in columns.
rows = [[str(e) for e in r] for r in rows]
entry_widths = [max(len(e) for e in c) for c in zip(*rows)]
rows = [[e.rjust(w) for e, w in zip(r, entry_widths)] for r in rows]
c_file.write("""
static RE_AllCases re_all_cases_table[] = {
""")
for r in rows:
c_file.write(" {{{}}},\n".format(", ".join(r)))
c_file.write("};\n")
# Write how much storage will be used by the table.
c_file.write("""
/* {name}: {bytesize} bytes. */
""".format(name=self.name, bytesize=entry_size * len(rows)))
# Write the lookup function.
prototype = "int re_get_{name}(RE_UINT32 ch, RE_UINT32* codepoints)".format(name=self.name.lower())
h_file.write("{prototype};\n".format(prototype=prototype))
c_file.write("""
{prototype} {{
""".format(name=self.name, prototype=prototype))
self._generate_locals(c_file)
c_file.write("""\
RE_AllCases* all_cases;
int count;
""")
self._generate_lookup(c_file)
c_file.write("""
all_cases = &re_all_cases_table[value];
codepoints[0] = ch;
count = 1;
while (count < RE_MAX_CASES && all_cases->diffs[count - 1] != 0) {
codepoints[count] = ch + all_cases->diffs[count - 1];
++count;
}
return count;
}
""")
class SimpleCaseFoldingProperty(Property):
"Unicode simple case-folding."
def __init__(self, name, entries, value_dict):
self.name = name
self.entries = entries
self._value_list = []
self._value_dict = {}
for name, value in sorted(value_dict.items(), key=lambda pair:
pair[1]):
val = PropertyValue(name, value)
self._value_list.append(val)
self._value_dict[name] = val
self.binary = False
self.aliases = set()
def generate_code(self, h_file, c_file, info):
"Generates the code for a property."
print("Generating code for {}".format(self.name))
# Build the tables.
self._build_tables()
# Write the case-folding tables.
c_file.write("""
/* {name}. */
""".format(name=self.name))
self.generate_tables(c_file)
# What data type should we use for the case-folding entries?
rows = [val.name for val in self._value_list]
# Calculate the size of an entry, including alignment.
entry_size = 4
# Write the entries, nicely aligned in columns.
rows = [str(r) for r in rows]
entry_width = max(len(r) for r in rows)
rows = [r.rjust(entry_width) for r in rows]
c_file.write("""
static RE_INT32 re_simple_case_folding_table[] = {
""")
for r in rows:
c_file.write(" {},\n".format(r))
c_file.write("};\n")
# Write how much storage will be used by the table.
c_file.write("""
/* {name}: {bytesize} bytes. */
""".format(name=self.name, bytesize=entry_size * len(rows)))
# Write the lookup function.
prototype = "RE_UINT32 re_get_{name}(RE_UINT32 ch)".format(name=self.name.lower())
h_file.write("{prototype};\n".format(prototype=prototype))
c_file.write("""
{prototype} {{
""".format(name=self.name, prototype=prototype))
self._generate_locals(c_file)
c_file.write("""\
RE_INT32 diff;
""")
self._generate_lookup(c_file)
c_file.write("""
diff = re_simple_case_folding_table[value];
return ch + diff;
}
""")
class FullCaseFoldingProperty(Property):
"Unicode full case-folding."
def __init__(self, name, entries, value_dict):
self.name = name
self.entries = entries
self._value_list = []
self._value_dict = {}
for name, value in sorted(value_dict.items(), key=lambda pair:
pair[1]):
val = PropertyValue(name, value)
self._value_list.append(val)
self._value_dict[name] = val
self.binary = False
self.aliases = set()
def generate_code(self, h_file, c_file, info):
"Generates the code for a property."
print("Generating code for {}".format(self.name))
# Build the tables.
self._build_tables()
# Write the case-folding tables.
c_file.write("""
/* {name}. */
""".format(name=self.name))
self.generate_tables(c_file)
# What data type should we use for the case-folding entries?
rows = [list(val.name) for val in self._value_list]
# The diff entry needs to be signed 32-bit, the others should be OK
# with unsigned 16-bit.
data = [e for r in rows for e in r[1 : ]]
# Verify that unsigned 16-bit is OK.
data_type = smallest_data_type(min(data), max(data))
if data_type != "RE_UINT16":
raise UnicodeDataError("full case-folding table entry too big")
# Calculate the size of an entry, including alignment.
entry_size = 4 + 2 * (info["max_folded"] - 1)
excess = entry_size % 4
if excess > 0:
entry_size += 4 - excess
# Pad the case-folding entries to the same length and append the count.
max_len = max(len(r) for r in rows)
padding = [0] * (max_len - 1)
rows = [(r + padding)[ : max_len] for r in rows]
# Write the entries, nicely aligned in columns.
rows = [[str(e) for e in r] for r in rows]
entry_widths = [max(len(e) for e in c) for c in zip(*rows)]
rows = [[e.rjust(w) for e, w in zip(r, entry_widths)] for r in rows]
c_file.write("""
static RE_FullCaseFolding re_full_case_folding_table[] = {
""")
for r in rows:
c_file.write(" {{{}}},\n".format(", ".join(r)))
c_file.write("};\n")
# Write how much storage will be used by the table.
c_file.write("""
/* {name}: {bytesize} bytes. */
""".format(name=self.name, bytesize=entry_size * len(rows)))
# Write the lookup function.
prototype = "int re_get_{name}(RE_UINT32 ch, RE_UINT32* codepoints)".format(name=self.name.lower())
h_file.write("{prototype};\n".format(prototype=prototype))
c_file.write("""
{prototype} {{
""".format(name=self.name, prototype=prototype))
self._generate_locals(c_file)
c_file.write("""\
RE_FullCaseFolding* case_folding;
int count;
""")
self._generate_lookup(c_file)
c_file.write("""
case_folding = &re_full_case_folding_table[value];
codepoints[0] = ch + case_folding->diff;
count = 1;
while (count < RE_MAX_FOLDED && case_folding->codepoints[count - 1] != 0) {
codepoints[count] = case_folding->codepoints[count - 1];
++count;
}
return count;
}
""")
class CompoundProperty(Property):
"A compound Unicode property."
def __init__(self, name, function):
Property.__init__(self, name, [], {})
self.function = function
def generate_code(self, h_file, c_file, info):
"Generates the code for a property."
print("Generating code for {}".format(self.name))
# Write the lookup function.
prototype = "RE_UINT32 re_get_{name}(RE_UINT32 ch)".format(name=self.name.lower())
h_file.write("{prototype};\n".format(prototype=prototype))
c_file.write("""
/* {name}. */
{prototype} {{
{function}}}
""".format(name=self.name, prototype=prototype, function=self.function))
class PropertySet:
"An ordered set of Unicode properties."
def __init__(self):
self._property_list = []
self._property_dict = {}
def add(self, prop):
"Adds a property."
# Make it case-insensitive.
upper_name = prop.name.upper()
if upper_name in self._property_dict:
raise KeyError("duplicate property name: {}".format(prop.name))
prop.id = len(self._property_list)
self._property_list.append(prop)
self._property_dict[upper_name] = prop
def use_pref_name(self):
"""Use a better name for a property or value if the current one is
poor.
"""
for prop in self._property_list:
prop.use_pref_name()
def get(self, name, default=None):
try:
return self.__getitem__(name)
except KeyError:
return default
def __len__(self):
return len(self._property_list)
def __getitem__(self, name):
# Make it case-insensitive.
upper_name = name.upper()
prop = self._property_dict.get(upper_name)
if not prop:
# Can't find a property with that name, so collect the aliases and
# try again.
for prop in self._property_list:
for alias in {prop.name} | prop.aliases:
self._property_dict[alias.upper()] = prop
prop = self._property_dict.get(upper_name)
if not prop:
raise KeyError(name)
return prop
def __iter__(self):
for prop in self._property_list:
yield prop
def download_unicode_file(url, unicode_folder):
"Downloads a Unicode file."
name = urlparse(url).path.rsplit("/")[-1]
path = os.path.join(unicode_folder, name)
# Do we need to download it?
if os.path.isfile(path) and not FORCE_UPDATE:
return
print("Downloading {} to {}".format(url, path))
new_path = os.path.splitext(path)[0] + ".new"
try:
urlretrieve(url, new_path)
except ValueError:
# Failed to download, so clean up and report it.
try:
os.remove(new_path)
except OSError:
pass
raise
os.remove(path)
os.rename(new_path, path)
# Is this a new version of the file?
with open(path, encoding="utf-8") as file:
# Normally the first line of the file contains its versioned name.
line = file.readline()
if line.startswith("#") and line.endswith(".txt\n"):
versioned_name = line.strip("# \n")
versioned_path = os.path.join(unicode_folder, versioned_name)
if not os.path.isfile(versioned_path):
# We don't have this version, so copy it.
shutil.copy2(path, versioned_path)
print("Updated to {}".format(versioned_name))
def reduce_name(name):
"Reduces a name to uppercase without punctuation, unless it's numeric."
r = reduced_names.get(name)
if r is None:
if all(part.isdigit() for part in name.lstrip("-").split("/", 1)):
r = name
else:
r = name.translate(reduce_trans).upper()
reduced_names[name] = r
return r
def std_name(name):
"Standardises the form of a name to its first occurrence"
r = reduce_name(name)
s = standardised_names.get(r)
if s is None:
s = name.replace(" ", "_")
standardised_names[r] = s
return s
def parse_property_aliases(unicode_folder, filename):
"Parses the PropertyAliases data."
print("Parsing '{}'".format(filename))
path = os.path.join(unicode_folder, filename)
property_aliases = {}
for line in open(path):
line = line.partition("#")[0].strip()
if line:
# Format is: abbrev., pref., other...
fields = [std_name(f.strip()) for f in line.split(";")]
pref_name = fields.pop(1)
aliases = set(fields)
for name in {pref_name} | aliases:
property_aliases[name] = (pref_name, aliases)
return property_aliases
def parse_value_aliases(unicode_folder, filename):
"Parses the PropertyValueAliases data."
print("Parsing '{}'".format(filename))
path = os.path.join(unicode_folder, filename)
value_aliases = defaultdict(dict)
for line in open(path):
line = line.partition("#")[0].strip()
if line:
# Format is: property, abbrev., pref., other...
# except for "ccc": property, numeric, abbrev., pref., other...
fields = [std_name(f.strip()) for f in line.split(";")]
prop_name = fields.pop(0)
if prop_name == "ccc":
pref_name = fields.pop(2)
else:
pref_name = fields.pop(1)
aliases = set(fields)
# Sometimes there's no abbreviated name, which is indicated by
# "n/a".
aliases.discard("n/a")
prop = value_aliases[prop_name]
for name in {pref_name} | aliases:
prop[name] = (pref_name, aliases)
return value_aliases
def check_codepoint_count(entries, codepoint_counts):
"Checks that the number of codepoints is correct."
counts = defaultdict(int)
for e in entries:
counts[e] += 1
for name, value, expected in codepoint_counts:
if counts[value] != expected:
raise UnicodeDataError("codepoint count mismatch: expected {} with '{}' but saw {} [value is {}]".format(expected,
name, counts[value], value))
def parse_data_file(filename, properties, numeric_values=False):
"Parses a multi-value file."
print("Parsing '{}'".format(filename))
path = os.path.join(unicode_folder, filename)
# Initialise with the default value.
entries = [0] * NUM_CODEPOINTS
value_dict = {}
aliases = {}
prop_name = prop_alias = None
default = default_alias = None
val_alias = None
listed_values = False
value_field = 1
codepoint_counts = []
if numeric_values:
prop_name = std_name("Numeric_Value")
value_field = 3
# Parse the data file.
#
# There is a certain amount of variation in the file format, which is why
# it takes so many lines of code to parse it.
for line in open(path):
if line.startswith("#"):
if line.startswith("# Property:"):
# The name of a property.
prop_name = std_name(line.rsplit(None, 1)[-1])
prop_alias = None
print(" Property '{}'".format(prop_name))
listed_values = True
elif line.startswith("# Derived Property:"):
# It's a new property.
if prop_name:
# Should we check the number of codepoints?
if COUNT_CODEPOINTS:
check_codepoint_count(entries, codepoint_counts)
codepoint_counts = []
# Save the current property.
if any(entries):
prop = Property(prop_name, entries, value_dict)
if prop_alias:
prop.aliases.add(prop_alias)
properties.add(prop)
# Reset for the new property.
entries = [0] * NUM_CODEPOINTS
words = line.split()
if words[-1].endswith(")"):
# It ends with something in parentheses, possibly more
# than one word.
while not words[-1].startswith("("):
words.pop()
prop_name, prop_alias = words[-2], words[-1].strip("()")
if prop_alias.lower() in {prop_name.lower(), "deprecated"}:
prop_alias = None
else:
prop_name, prop_alias = words[-1], None
prop_name = std_name(prop_name)
if prop_alias:
prop_alias = std_name(prop_alias)
if prop_alias:
print(" Property '{}' alias '{}'".format(prop_name,
prop_alias))
else:
print(" Property '{}'".format(prop_name))
elif line.startswith("# All code points not explicitly listed for "):
# The name of a property.
new = std_name(line.rsplit(None, 1)[1])
if prop_name:
if new != prop_name:
raise UnicodeDataError("property mismatch: saw '{}' and then '{}'".format(prop_name,
new))
else:
prop_name = new
prop_alias = None
print(" Property '{}'".format(prop_name))
listed_values = True
elif line.startswith("# have the value "):
# The name of the default value.
words = line.rsplit(None, 2)
default, default_alias = words[-1].rstrip("."), None
if default[ : 1] + default[-1 : ] == "()":
# The last word looks line an alias in parentheses.
default, default_alias = words[-2], default[1 : -1]
if default_alias in {default, "deprecated"}:
default_alias = None
default = std_name(default)
if default_alias:
default_alias = std_name(default_alias)
value_dict.setdefault(default, 0)
if default_alias:
print(" Default '{}' alias '{}'".format(default, default_alias))
else:
print(" Default '{}'".format(default))
listed_values = True
elif line.startswith("# @missing:"):
# The name of the default value.
new = std_name(line.rsplit(None, 1)[-1])
if default:
if new != default:
raise UnicodeDataError("default mismatch: saw '{}' and then '{}'".format(default,
new))
else:
default = new
value_dict.setdefault(default, 0)
print(" Default '{}' => 0".format(default))
listed_values = True
elif line.startswith("# Total code points:"):
# The number of codepoints with this value or property.
expected = int(line.rsplit(None, 1)[1])
if not listed_values:
value = 1
codepoint_counts.append((v, value, expected))
elif prop_name and line.startswith("# {}=".format(prop_name)):
# The alias of the value.
val_alias = std_name(line.rsplit("=")[-1].strip())
print(" Value '{}'".format(val_alias))
elif ";" in line:
# Discard any comment and then split into fields.
fields = line.split("#", 1)[0].split(";")
code_range = [int(f, 16) for f in fields[0].split("..")]
v = std_name(fields[value_field].strip())
if listed_values:
# The values of a property.
if v in {default, default_alias}:
value = 0
else:
if not default:
if val_alias:
default = val_alias
print(" Default '{}'".format(default))
else:
raise UnicodeDataError("unknown default")
value = value_dict.get(v)
if value is None:
value = value_dict.setdefault(v, len(value_dict))
if val_alias and val_alias != v:
aliases[val_alias] = v
print(" Value '{}' alias '{}' => {}".format(val_alias,
v, value))
val_alias = None
else:
print(" Value '{}' => {}".format(v, value))
else:
# It's a binary property.
if v != prop_name:
if prop_name:
# Should we check the number of codepoints?
if COUNT_CODEPOINTS:
check_codepoint_count(entries, codepoint_counts)
codepoint_counts = []
# Save the current property.
prop = Property(prop_name, entries, value_dict)
if prop_alias:
prop.aliases.add(prop_alias)
properties.add(prop)
# Reset for the new property.
entries = [0] * NUM_CODEPOINTS
prop_name = v
print(" Property '{}'".format(prop_name))
value = 1
# Store the entries in the range.
for code in range(code_range[0], code_range[-1] + 1):
entries[code] = value
if not prop_name:
raise UnicodeDataError("unknown property name")
# Should we check the number of codepoints?
if COUNT_CODEPOINTS:
check_codepoint_count(entries, codepoint_counts)
codepoint_counts = []
if "Grapheme" in filename:
# In Unicode 6.1, there are no entries in the
# "GraphemeBreakProperty.txt" file with the value "Prepend", so we need
# to add it here in order not to break the code.
value_dict.setdefault(std_name("Prepend"), len(value_dict))
# Save the property.
prop = Property(prop_name, entries, value_dict)
if prop_alias:
prop.aliases.add(prop_alias)
if listed_values and default_alias:
if default_alias in value_dict:
default, default_alias = default_alias, default
prop[default].aliases.add(default_alias)
for name, alias in aliases.items():
prop[alias].aliases.add(name)
properties.add(prop)
def parse_NumericValues_file(filename, properties):
"Parses the 'NumericValues' file."
parse_data_file(filename, properties, numeric_values=True)
def parse_CaseFolding(file_name):
"Parses the Unicode CaseFolding file."
path = os.path.join(unicode_folder, file_name)
print("Parsing '{}'".format(file_name))
# Initialise with the default value.
simple_folding_entries = [0] * NUM_CODEPOINTS
simple_folding_value_dict = {0: 0}
full_folding_entries = [0] * NUM_CODEPOINTS
full_folding_value_dict = {(0, ): 0}
equivalent_dict = defaultdict(set)
expand_set = set()
turkic_set = set()
for line in open(path):
if not line.startswith("#") and ";" in line:
fields = line.split(";")
code = int(fields[0], 16)
fold_type = fields[1].strip()
folded = [int(f, 16) for f in fields[2].split()]
if fold_type in "CFS":
# Determine the equivalences.
equiv_set = set()
for c in [(code, ), tuple(folded)]:
equiv_set |= equivalent_dict.get(c, {c})
for c in equiv_set:
equivalent_dict[c] = equiv_set
entry = [folded[0] - code] + folded[1 : ]
if fold_type in "CS":
value = simple_folding_value_dict.setdefault(entry[0],
len(simple_folding_value_dict))
simple_folding_entries[code] = value
if fold_type in "CF":
value = full_folding_value_dict.setdefault(tuple(entry),
len(full_folding_value_dict))
full_folding_entries[code] = value
if len(entry) > 1:
expand_set.add(code)
if fold_type == "T":
# Turkic folded cases.
turkic_set.add((code, tuple(folded)))
# Is the Turkic set what we expected?
if turkic_set != {(0x49, (0x131, )), (0x130, (0x69, ))}:
raise UnicodeDataError("Turkic set has changed")
# Add the Turkic set to the equivalences. Note that:
#
# dotted_capital == dotted_small
#
# and:
#
# dotted_small == dotless_capital
#
# but:
#
# dotted_capital != dotless_capital
#
for code, folded in turkic_set:
char1, char2 = (code, ), folded
equivalent_dict[char1] = equivalent_dict[char1] | {char2}
equivalent_dict[char2] = equivalent_dict[char2] | {char1}
# Sort the equivalent cases.
other_cases = []
for code, equiv_set in equivalent_dict.items():
if len(code) == 1:
diff_list = []
for e in equiv_set - {code}:
if len(e) == 1:
diff_list.append(e[0] - code[0])
other_cases.append((code[0], sorted(diff_list)))
other_cases.sort()
# How many other cases can there be?
max_other_cases = max(len(diff_list) for code, diff_list in other_cases)
# Initialise with the default value.
default_value = [0] * max_other_cases
others_entries = [0] * NUM_CODEPOINTS
others_value_dict = {tuple(default_value): 0}
for code, diff_list in other_cases:
entry = tuple(diff_list + default_value)[ : max_other_cases]
value = others_value_dict.setdefault(entry, len(others_value_dict))
others_entries[code] = value
# Save the all-cases property.
all_prop = AllCasesProperty(std_name("All_Cases"), others_entries,
others_value_dict)
# Save the simple case-folding property.
simple_folding_prop = SimpleCaseFoldingProperty(std_name("Simple_Case_Folding"),
simple_folding_entries, simple_folding_value_dict)
# Save the full case-folding property.
full_folding_prop = FullCaseFoldingProperty(std_name("Full_Case_Folding"),
full_folding_entries, full_folding_value_dict)
info = dict(all_cases=all_prop, simple_case_folding=simple_folding_prop,
full_case_folding=full_folding_prop, expand_set=expand_set)
return info
def define_Alphanumeric_property(properties):
"Defines the Alphanumeric property."
prop_name = std_name("Alphanumeric")
print("Defining '{}'".format(prop_name))
function = """\
RE_UINT32 v;
v = re_get_alphabetic(ch);
if (v == 1)
return 1;
v = re_get_general_category(ch);
if (v == RE_PROP_ND)
return 1;
return 0;
"""
properties.add(CompoundProperty(prop_name, function))
def define_Any_property(properties):
"Defines the Any property."
prop_name = std_name("Any")
print("Defining '{}'".format(prop_name))
function = """\
return 1;
"""
properties.add(CompoundProperty(prop_name, function))
def define_Assigned_property(properties):
"Defines the Assigned property."
prop_name = std_name("Assigned")
print("Defining '{}'".format(prop_name))
function = """\
if (re_get_general_category(ch) != RE_PROP_CN)
return 1;
return 0;
"""
properties.add(CompoundProperty(prop_name, function))
def define_Blank_property(properties):
"Defines the Blank property."
prop_name = std_name("Blank")
print("Defining '{}'".format(prop_name))
function = """\
RE_UINT32 v;
if (0x0A <= ch && ch <= 0x0D || ch == 0x85)
return 0;
v = re_get_white_space(ch);
if (v == 0)
return 0;
v = re_get_general_category(ch);
if ((RE_BLANK_MASK & (1 << v)) != 0)
return 0;
return 1;
"""
properties.add(CompoundProperty(prop_name, function))
def define_Graph_property(properties):
"Defines the Graph property."
prop_name = std_name("Graph")
print("Defining '{}'".format(prop_name))
function = """\
RE_UINT32 v;
v = re_get_white_space(ch);
if (v == 1)
return 0;
v = re_get_general_category(ch);
if ((RE_GRAPH_MASK & (1 << v)) != 0)
return 0;
return 1;
"""
properties.add(CompoundProperty(prop_name, function))
def define_Print_property(properties):
"Defines the Print property."
prop_name = std_name("Print")
print("Defining '{}'".format(prop_name))
function = """\
RE_UINT32 v;
v = re_get_general_category(ch);
if (v == RE_PROP_CC)
return 0;
v = re_get_graph(ch);
if (v == 1)
return 1;
v = re_get_blank(ch);
if (v == 1)
return 1;
return 0;
"""
properties.add(CompoundProperty(prop_name, function))
def define_Word_property(properties):
"Defines the Word property."
prop_name = std_name("Word")
print("Defining '{}'".format(prop_name))
function = """\
RE_UINT32 v;
v = re_get_alphabetic(ch);
if (v == 1)
return 1;
v = re_get_general_category(ch);
if ((RE_WORD_MASK & (1 << v)) != 0)
return 1;
return 0;
"""
properties.add(CompoundProperty(prop_name, function))
def first_true(iterable):
"Returns the first item which is true."
for i in iterable:
if i:
return i
return None
def pick_pref_name(name, aliases):
"Picks a better name if the current one is poor."
if name.isupper() or name.isdigit():
aliases = aliases | {name}
better_name = max(aliases, key=lambda name: len(name))
name = better_name
aliases.remove(better_name)
return name, aliases
def write_properties_description(properties, properties_path):
"Writes a list of the properties which are supported by this module."
with open(properties_path, "w", encoding="utf-8", newline="\n") as p_file:
p_file.write("The following is a list of the {} properties which are supported by this module:\n".format(len(properties)))
sorted_properties = sorted(properties, key=lambda prop: prop.name)
for prop in sorted_properties:
p_file.write("\n")
name = prop.name
aliases = sorted(prop.aliases)
if aliases:
p_file.write("{} [{}]\n".format(name, ", ".join(aliases)))
else:
p_file.write("{}\n".format(name))
sorted_values = sorted(prop, key=lambda val: val.name)
for val in sorted_values:
name = val.name
aliases = sorted(val.aliases)
if aliases:
p_file.write(" {} [{}]\n".format(name,
", ".join(aliases)))
else:
p_file.write(" {}\n".format(name))
def tabulate(rows):
"Creates a table with right-justified columns."
# Convert all the entries to strings.
rows = [[str(e) for e in row] for row in rows]
# Determine the widths of the columns.
widths = [max(len(e) for e in column) for column in zip(*rows)]
# Pad all the entries.
rows = [[e.rjust(w) for e, w in zip(row, widths)] for row in rows]
return rows
def parse_unicode_data():
"Parses the Unicode data."
# Parse the aliases.
property_aliases = parse_property_aliases(unicode_folder,
"PropertyAliases.txt")
value_aliases = parse_value_aliases(unicode_folder,
"PropertyValueAliases.txt")
# The set of properties.
properties = PropertySet()
# The parsers for the various file formats.
parsers = {"": parse_data_file, "NumericValues": parse_NumericValues_file}
# Parse the property data files.
for line in unicode_info.splitlines():
if line and line[0] != "#":
url, sep, file_format = line.partition(":")
if file_format != "~":
filename = url.rpartition("/")[-1]
parsers[file_format](filename, properties)
# Parse the case-folding data specially.
info = parse_CaseFolding("CaseFolding.txt")
max_cases = max(len(val.name) for val in info["all_cases"]) + 1
max_folded = max(len(val.name) for val in info["full_case_folding"])
# Define some additional properties.
define_Alphanumeric_property(properties)
define_Any_property(properties)
define_Assigned_property(properties)
define_Blank_property(properties)
define_Graph_property(properties)
define_Print_property(properties)
define_Word_property(properties)
# The additional General_Category properties.
gc_prop = properties["General_Category"]
gc_short = {}
gc_masks = defaultdict(int)
for val in gc_prop:
short_name = [a.upper() for a in {val.name} | val.aliases if len(a) ==
2][0]
gc_short[short_name] = val.id
gc_masks[short_name[0]] |= 1 << val.id
last_id = max(val.id for val in gc_prop)
for name in sorted(gc_masks):
last_id += 1
val = PropertyValue(name, last_id)
val.aliases.add(name + "&")
gc_prop.add(val)
# Add the value aliases for the binary properties.
print("Checking binary properties")
for prop in properties:
if len(prop) == 0:
prop.make_binary_property()
# Add the property and value aliases.
print("Adding aliases")
for prop in properties:
try:
pref_name, aliases = property_aliases[prop.name]
prop_aliases = {prop.name, pref_name} | aliases
prop.aliases |= prop_aliases - {prop.name}
val_aliases = first_true(value_aliases.get(a) for a in prop_aliases)
if val_aliases:
for i, val in enumerate(prop):
try:
pref_name, aliases = val_aliases[val.name]
aliases = {val.name, pref_name} | aliases
val.aliases |= aliases - {val.name}
except KeyError:
pass
except KeyError:
pass
# Additional aliases.
prop = properties["Alphanumeric"]
prop.aliases.add(std_name("AlNum"))
prop = properties["Hex_Digit"]
prop.aliases.add(std_name("XDigit"))
# Ensure that all the properties and values use the preferred name.
properties.use_pref_name()
info.update(dict(properties=properties, max_cases=max_cases,
max_folded=max_folded, gc_short=gc_short, gc_masks=gc_masks))
return info
def generate_code(strings):
"Generates the C files."
h_file = open(h_path, "w", encoding="utf-8", newline="\n")
c_file = open(c_path, "w", encoding="utf-8", newline="\n")
# Useful definitions.
h_file.write("""\
typedef unsigned char RE_UINT8;
typedef signed char RE_INT8;
typedef unsigned short RE_UINT16;
typedef signed short RE_INT16;
typedef unsigned int RE_UINT32;
typedef signed int RE_INT32;
typedef unsigned char BOOL;
enum {{FALSE, TRUE}};
#define RE_ASCII_MAX 0x7F
#define RE_LOCALE_MAX 0xFF
#define RE_UNICODE_MAX 0x10FFFF
#define RE_MAX_CASES {max_cases}
#define RE_MAX_FOLDED {max_folded}
typedef struct RE_Property {{
RE_UINT16 name;
RE_UINT8 id;
RE_UINT8 value_set;
}} RE_Property;
typedef struct RE_PropertyValue {{
RE_UINT16 name;
RE_UINT8 value_set;
RE_UINT8 id;
}} RE_PropertyValue;
typedef RE_UINT32 (*RE_GetPropertyFunc)(RE_UINT32 ch);
""".format(max_cases=info["max_cases"], max_folded=info["max_folded"]))
for prop in ("GC", "Cased", "Uppercase", "Lowercase"):
h_file.write("#define RE_PROP_{} 0x{:X}\n".format(prop.upper(), properties[prop].id))
h_file.write("\n")
RE_Property_size = 4
RE_PropertyValue_size = 4
# Define the property types.
last_val_id = max(info["gc_short"].values())
for val_id, name in enumerate(sorted(info["gc_masks"]), start=last_val_id + 1):
h_file.write("#define RE_PROP_{} {}\n".format(name, val_id))
h_file.write("\n")
# Write the General_Category properties.
for name, val_id in sorted(info["gc_short"].items(), key=lambda pair: pair[1]):
h_file.write("#define RE_PROP_{} {}\n".format(name, val_id))
h_file.write("\n")
# Define a property masks.
for name, mask in sorted(info["gc_masks"].items()):
h_file.write("#define RE_PROP_{}_MASK 0x{:08X}\n".format(name, mask))
h_file.write("\n")
# The common abbreviated properties.
common_props = """
AlNum
Alpha
Any
Assigned
Blank
Cntrl
Digit
Graph
Lower
Print
Punct
Space
Upper
Word
XDigit
""".split()
for name in common_props:
prop = properties.get(name)
if prop is not None:
h_file.write("#define RE_PROP_{} 0x{:06X}\n".format(name.upper(),
prop.id << 16 | 1))
else:
prop = properties["GC"]
val = prop.get(name)
if val is not None:
h_file.write("#define RE_PROP_{} 0x{:06X}\n".format(name.upper(),
prop.id << 16 | val.id))
else:
raise UnicodeDataError("unknown abbreviated property: '{}'".format(name))
prop = properties["Block"]
h_file.write("#define RE_PROP_ASCII 0x{:06X}\n".format((prop.id << 16) | prop["ASCII"].id))
h_file.write("\n")
# Define the word-break values.
for val in properties["Word_Break"]:
name = reduce_name(val.name)
h_file.write("#define RE_BREAK_{} {}\n".format(name, val.id))
h_file.write("\n")
# Define the grapheme cluster-break values.
for val in properties["Grapheme_Cluster_Break"]:
name = reduce_name(val.name)
h_file.write("#define RE_GBREAK_{} {}\n".format(name, val.id))
c_file.write('#include "_regex_unicode.h"\n')
# Write the standardised strings.
c_file.write("""
#define RE_BLANK_MASK ((1 << RE_PROP_ZL) | (1 << RE_PROP_ZP))
#define RE_GRAPH_MASK ((1 << RE_PROP_CC) | (1 << RE_PROP_CS) | (1 << RE_PROP_CN))
#define RE_WORD_MASK (RE_PROP_M_MASK | (1 << RE_PROP_ND) | (1 << RE_PROP_PC))
typedef struct RE_AllCases {{
{data_type} diffs[RE_MAX_CASES - 1];
}} RE_AllCases;
typedef struct RE_FullCaseFolding {{
RE_INT32 diff;
RE_UINT16 codepoints[RE_MAX_FOLDED - 1];
}} RE_FullCaseFolding;
/* strings. */
char* re_strings[] = {{
""".format(data_type=info["all_cases"].case_data_type))
# Calculate the number and size of the string constants.
bytesize = 0
for s in strings:
s = reduce_name(s)
c_file.write(" \"{}\",\n".format(s))
bytesize += len(s) + 1
h_file.write("\nextern char* re_strings[{}];\n".format(len(strings)))
c_file.write("""}};
/* strings: {bytesize} bytes. */
""".format(bytesize=bytesize))
# Write the property name tables.
#
# Properties which are aliases have the same property id, and properties,
# such as binary properties, which have the same set of values have the
# same value set id.
# The rows of the property and value tables.
property_rows = []
value_rows = []
# The value sets.
value_sets = {}
# Give an id to each distinct property or value name.
strings = {s: i for i, s in enumerate(strings)}
for prop in properties:
val_set = tuple(val.name for val in prop)
new_val_set = val_set not in value_sets
val_set_id = value_sets.setdefault(val_set, len(value_sets))
# name of property, id of property, id of value set
property_rows.append((strings[prop.name], prop.id, val_set_id))
for alias in prop.aliases:
property_rows.append((strings[alias], prop.id, val_set_id))
# We don't want to duplicate value sets.
if new_val_set:
for val in prop:
# name of value, id of value set, value
value_rows.append((strings[val.name], val_set_id, val.id))
for alias in val.aliases:
value_rows.append((strings[alias], val_set_id, val.id))
# Fix the column widths of the tables.
property_rows = tabulate(property_rows)
value_rows = tabulate(value_rows)
expand_set = info["expand_set"]
expand_data_type, expand_data_size = determine_data_type(min(expand_set),
max(expand_set))
# write the property tables and the corresponding lookup functions.
c_file.write("""
/* properties. */
RE_Property re_properties[] = {
""")
h_file.write("""\
extern RE_Property re_properties[{prop_rows}];
extern RE_PropertyValue re_property_values[{val_rows}];
extern {data_type} re_expand_on_folding[{expand_rows}];
extern RE_GetPropertyFunc re_get_property[{func_count}];
""".format(prop_rows=len(property_rows), val_rows=len(value_rows),
data_type=expand_data_type, expand_rows=len(expand_set),
func_count=len(properties)))
for row in property_rows:
c_file.write(" {{{}}},\n".format(", ".join(row)))
c_file.write("""\
}};
/* properties: {bytesize} bytes. */
/* property values. */
RE_PropertyValue re_property_values[] = {{
""".format(bytesize=RE_Property_size * len(property_rows)))
for row in value_rows:
c_file.write(" {{{}}},\n".format(", ".join(row)))
c_file.write("""\
}};
/* property values: {bytesize} bytes. */
/* Codepoints which expand on full case-folding. */
{data_type} re_expand_on_folding[] = {{
""".format(bytesize=RE_PropertyValue_size * len(value_rows),
data_type=expand_data_type))
items = ["{},".format(c) for c in sorted(expand_set)]
width = max(len(i) for i in items)
items = [i.rjust(width) for i in items]
columns = 8
for start in range(0, len(items), columns):
c_file.write(" {}\n".format(" ".join(items[start : start + columns])))
c_file.write("""}};
/* expand_on_folding: {bytesize} bytes. */
""".format(bytesize=len(items) * expand_data_size))
# Build and write the property data tables.
for property in properties:
property.generate_code(h_file, c_file, info)
info["all_cases"].generate_code(h_file, c_file, info)
info["simple_case_folding"].generate_code(h_file, c_file, info)
info["full_case_folding"].generate_code(h_file, c_file, info)
# Write the property function array.
c_file.write("""
/* Property function table. */
RE_GetPropertyFunc re_get_property[] = {
""")
for prop in properties:
c_file.write(" re_get_{},\n".format(prop.name.lower()))
c_file.write("};\n")
h_file.close()
c_file.close()
# Build a dict for converting 8-tuples into bytes.
bitflag_dict = {}
for value in range(0x100):
bits = []
for pos in range(8):
bits.append((value >> pos) & 0x1)
bitflag_dict[tuple(bits)] = value
# Storage and support for reduced names.
#
# A reduced name is a name converted to uppercase and with its punctuation
# removed.
reduced_names = {}
reduce_trans = str.maketrans({" ": "", "_": "","-": ""})
# The names, converted to a standardised form.
standardised_names = {}
# The Unicode data files.
unicode_data_base = "http://www.unicode.org/Public/UNIDATA/"
unicode_info = """
auxiliary/GraphemeBreakProperty.txt
auxiliary/SentenceBreakProperty.txt
auxiliary/WordBreakProperty.txt
Blocks.txt
CaseFolding.txt:~
DerivedCoreProperties.txt
extracted/DerivedBidiClass.txt
extracted/DerivedBinaryProperties.txt
extracted/DerivedCombiningClass.txt
extracted/DerivedDecompositionType.txt
extracted/DerivedEastAsianWidth.txt
extracted/DerivedGeneralCategory.txt
extracted/DerivedJoiningGroup.txt
extracted/DerivedJoiningType.txt
extracted/DerivedLineBreak.txt
extracted/DerivedNumericType.txt
extracted/DerivedNumericValues.txt:NumericValues
HangulSyllableType.txt
IndicMatraCategory.txt
IndicSyllabicCategory.txt
PropertyAliases.txt:~
PropertyValueAliases.txt:~
PropList.txt
Scripts.txt
#UnicodeData.txt
"""
# Download the Unicode data files.
for line in unicode_info.splitlines():
if line and line[0] != "#":
url = line.partition(":")[0]
download_unicode_file(urljoin(unicode_data_base, url), unicode_folder)
# Parse the Unicode data.
info = parse_unicode_data()
properties = info["properties"]
write_properties_description(properties, properties_path)
if len(properties) > 0x100:
raise UnicodeDataError("more than 256 properties")
for prop in properties:
if len(prop) > 0x100:
raise UnicodeDataError("more than 256 values: property '{}'".format(prop.name))
# Create the list of standardised strings.
strings = set()
for prop in properties:
strings.add(prop.name)
strings |= prop.aliases
for val in prop:
strings.add(val.name)
strings |= val.aliases
strings = sorted(set(strings), key=reduce_name)
# Generate the code.
generate_code(strings)
print("\nThere are {} properties".format(len(properties)))
import re
code = open(c_path).read()
sizes = defaultdict(int)
for n, s in re.findall(r"(\w+(?: \w+)*): (\d+) bytes", code):
sizes[n] += int(s)
sizes = sorted(sizes.items(), key=lambda pair: pair[1], reverse=True)
total_size = sum(s for n, s in sizes)
print("\nTotal: {} bytes\n".format(total_size))
prop_width = max(len(row[0]) for row in sizes)
prop_width = max(prop_width, 8)
storage_width = max(len(str(row[1])) for row in sizes)
storage_width = max(storage_width, 7)
print("{:{}} {:{}} {}".format("Property", prop_width, "Storage", storage_width, "Percentage"))
print("{:{}} {:{}} {}".format("--------", prop_width, "-------", storage_width, "----------"))
format = "{{:<{}}} {{:>{}}} {{:>5.1%}}".format(prop_width, storage_width)
for n, s in sizes:
print(format.format(n, s, s / total_size))
print("\nFinished!")
|