1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
"""
This module contains all the sub-classes of `GeneratorPattern` used in FoxDot. Unlike
a `Pattern`, a `GeneratorPattern` does not contain a list that is iterated over or
indexed but returns a value based on the index and an internal function. For example,
`PRand` returns a random value from a list of values. It will always return the same
value for the same index as it stores this in its internal cache. `Pattern` methods
such as `rotate` or `palindrome` are not available from the `GeneratorPattern` class
but slicing generators will return a `Pattern` object from which these methods can
be called e.g.
>>> gen = PRand([0,1,2])
>>> pat = gen[:5]
P[0, 1, 0, 2, 1]
>>> pat.rotate()
P[1, 0, 2, 1, 0]
Mathematical operations *do* work in the same way as they do in `Patterns`.
>>> gen1 = PRand([0,1,2])
>>> gen2 = gen1 + 10
>>> gen1[:5]
P[0, 2, 2, 1, 0]
>>> gen2[:5]
P[10, 12, 12, 11, 10]
"""
from renardo_lib.Patterns.Main import GeneratorPattern, Pattern, asStream, PatternInput
import random
class RandomGenerator(GeneratorPattern):
__seed = None
def __init__(self, *args, **kwargs):
GeneratorPattern.__init__(self, *args, **kwargs)
self.random = random
def init_random(self, *args, **kwargs):
""" To be called at the end of the __init__ """
if "seed" in kwargs:
self.random = self.random.Random()
self.random.seed(kwargs["seed"])
elif RandomGenerator.__seed is not None:
self.random = self.random.Random()
self.random.seed(RandomGenerator.__seed)
pattern = self[:5000]
self.__class__ = Pattern
self.data = pattern.data
return self
@classmethod
def set_override_seed(cls, seed):
cls.__seed = seed
return
# Pseudo-inheritance
def choice(self, *args, **kwargs):
return self.random.choice(*args, **kwargs)
def randint(self, *args, **kwargs):
return self.random.randint(*args, **kwargs)
def triangular(self, *args, **kwargs):
return self.random.triangular(*args, **kwargs)
class PRand(RandomGenerator):
''' Returns a random integer between start and stop. If start is a container-type it returns
a random item for that container. '''
def __init__(self, start, stop=None, **kwargs):
# If we're given a list, choose from that list -- TODO always use a list and use range
RandomGenerator.__init__(self, **kwargs)
self.args = (start, stop)
self.kwargs = kwargs
# Choosing from a list
if hasattr(start, "__iter__"):
self.data = Pattern(start)
try:
assert(len(self.data)>0)
except AssertionError:
raise AssertionError("{}: Argument size must be greater than 0".format(self.name))
self.choosing = True
self.low = self.high = None
else:
# Choosing from a range
self.choosing = False
self.low = start if stop is not None else 0
self.high = stop if stop is not None else start
try:
assert((self.high - self.low)>=1)
except AssertionError:
raise AssertionError("{}: Range size must be greater than 1".format(self.name))
self.data = "{}, {}".format(self.low, self.high)
self.init_random(**kwargs)
def choose(self):
return self.data[self.choice(range(self.MAX_SIZE))]
def func(self, index):
if self.choosing:
# value = self.choice(self.data)
value = self.choose()
else:
value = self.randint(self.low, self.high)
return value
def string(self):
""" Used in PlayString to show a PRand in curly braces """
return "{" + self.data.string() + "}"
class PWhite(RandomGenerator):
''' Returns random floating point values between 'lo' and 'hi' '''
def __init__(self, lo=0, hi=1, **kwargs):
RandomGenerator.__init__(self, **kwargs)
self.args = (lo, hi)
self.low = float(lo)
self.high = float(hi)
self.mid = (lo + hi) / 2.0
self.data = "{}, {}".format(self.low, self.high)
self.init_random(**kwargs)
def func(self, index):
return self.triangular(self.low, self.high, self.mid)
class PxRand(PRand):
def func(self, index):
value = PRand.func(self, index)
while value == self.last_value:
value = PRand.func(self, index)
self.last_value = value
return self.last_value
class PwRand(RandomGenerator):
def __init__(self, values, weights, **kwargs):
RandomGenerator.__init__(self, **kwargs)
self.args = (values, weights)
try:
assert(all(type(x) == int for x in weights))
except AssertionError:
e = "{}: Weights must be integers".format(self.name)
raise AssertionError(e)
self.data = Pattern(values)
self.weights = Pattern(weights).stretch(len(self.data))
self.values = self.data.stutter(self.weights)
self.init_random(**kwargs)
def choose(self):
return self.values[self.choice(range(self.MAX_SIZE))]
def func(self, index):
return self.choose()
class PChain(RandomGenerator):
""" An example of a Markov Chain generator pattern. The mapping argument
should be a dictionary of keys whose values are a list/pattern of possible
destinations. """
def __init__(self, mapping, **kwargs):
assert isinstance(mapping, dict)
RandomGenerator.__init__(self, **kwargs)
self.args = (mapping,)
self.last_value = 0
self.mapping = {}
i = 0
for key, value in mapping.items():
self.mapping[key] = self._convert_to_list(value)
# Use the first key to start with
if i == 0:
self.last_value = key
i += 1
self.init_random(**kwargs)
def func(self, *args, **kwargs):
index = self.last_value
if isinstance(self.last_value, GeneratorPattern):
index = index.CACHE_HEAD
if index in self.mapping:
self.last_value = self.choice(self.mapping[index])
return self.last_value
def _convert_to_list(self, value):
if isinstance(value, list):
return value
elif isinstance(value, Pattern):
return value.data
return [value]
class PZ12(GeneratorPattern):
""" Implementation of the PZ12 algorithm for predetermined random numbers. Using
an irrational value for p, however, results in a non-determined order of values.
Experimental, only works with 2 values.
"""
def __init__(self, tokens=[1,0], p=[1, 0.5]):
GeneratorPattern.__init__(self)
self.data = tokens
self.probs = [value / max(p) for value in p]
self._prev = []
self.dearth = [0 for n in self.data]
def _count_values(self, token):
return sum([self._prev[i] == token for i in range(len(self._prev))])
def func(self, index):
index = len(self._prev)
for i, token in enumerate(self.data):
d0 = self.probs[i] * (index + 1)
d1 = self._count_values(token)
self.dearth[i] = d0-d1
i = self.dearth.index(max(self.dearth))
value = self.data[i]
self._prev.append(value)
return value
class PTree(RandomGenerator):
""" Takes a starting value and two functions as arguments. The first function, f, must
take one value and return a container-type of values and the second function, choose,
must take a container-type and return a single value. In essence you are creating a
tree based on the f(n) where n is the last value chosen by choose.
"""
def __init__(self, n=0, f=lambda x: (x + 1, x - 1), choose=lambda x: random.choice(x), **kwargs):
RandomGenerator.__init__(self, **kwargs)
self.args=(n, f, choose)
self.f = f
self.choose = choose
self.values = [n]
self.init_random(**kwargs)
def func(self, index):
self.values.append( self.choose(self.f( self.values[-1] )) )
return self.values[-1]
class PWalk(RandomGenerator):
def __init__(self, max=7, step=1, start=0, **kwargs):
RandomGenerator.__init__(self, **kwargs)
self.args = (max, step, start)
self.max = abs(max)
self.min = self.max * -1
self.step = PatternInput(step).transform(abs)
self.start = start
self.data = [self.start, self.step, self.max]
self.directions = [lambda x, y: x + y, lambda x, y: x - y]
self.last_value = None
self.init_random(**kwargs)
def func(self, index):
if self.last_value is None:
self.last_value = self.start
else:
if self.last_value >= self.max: # force subtraction
f = self.directions[1]
elif self.last_value <= self.min: # force addition
f = self.directions[0]
else:
f = self.choice(self.directions)
self.last_value = f(self.last_value, self.step[index])
return self.last_value
class PDelta(GeneratorPattern):
def __init__(self, deltas, start=0):
GeneratorPattern.__init__(self)
self.deltas = asStream(deltas)
self.start = start
self.value = start
def func(self, index):
if index == 0:
return self.start
self.value += float(self.deltas[index - 1])
return self.value
class PSquare(GeneratorPattern):
''' Returns the square of the index being accessed '''
def func(self, index):
return index * index
class PIndex(GeneratorPattern):
''' Returns the index being accessed '''
def func(self, index):
return index
class PFibMod(GeneratorPattern):
""" Returns the fibonacci sequence -- maybe a bad idea"""
def func(self, index):
if index < 2: return index
a = self.cache.get(index-1, self.getitem(index-1))
b = self.cache.get(index-2, self.getitem(index-2))
return a + b
|