File: Main.py

package info (click to toggle)
python-renardo-lib 0.9.12-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,220 kB
  • sloc: python: 10,999; sh: 34; makefile: 7
file content (1662 lines) | stat: -rw-r--r-- 53,338 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
"""
Contains classes `Pattern` and `PGroup` and the base class for `GeneratorPattern` (see Generators.py).
"""

from random import choice, shuffle
from renardo_lib.Patterns.Operations import (
    PAdd, PSub2, PMul, PDiv, PDiv2, PFloor, PSub, PFloor2, PMod,
    PPow, PMod2, PPow2, PEq, Div, rDiv, Add, Sub, rSub, Mul, Mod,
    rMod, Nil, PNe
)
from renardo_lib.Utils import LCM, dots, modi

import functools
import inspect

# Decorator functions for nested expansion of pattern functions and methods

def loop_pattern_func(f):
    ''' Decorator for allowing any Pattern function to create
        multiple Patterns by using Patterns or TimeVars as arguments '''
    @functools.wraps(f)
    def new_function(*args):
        
        # Return any functions that use TimeVars as PvarGenerators
        timevars = [arg for arg in args if isinstance(arg, Pattern.TimeVar)]
        if len(timevars) > 0:
            return Pattern.TimeVar.CreatePvarGenerator(f, *args)
        
        # Loop the pattern with different values
        pat = Pattern()
        # Force pattern types if using lists/tuples
        args = [PatternFormat(arg) for arg in args]
        # Continually extend the pattern
        for i in range(LCM(*[len(arg) for arg in args if (hasattr(arg, '__len__') and not isinstance(arg, PGroup))])):
            pat |= f(*[(arg[i] if isinstance(arg, Pattern) else arg) for arg in args])
        return pat
    new_function.argspec = inspect.getfullargspec(f)
    return new_function

# TODO -- if it isn't looped, return the original if it is a group

def loop_pattern_method(f):
    ''' Decorator for allowing any Pattern method to create
        multiple (or rather, longer) Patterns by using Patterns as arguments '''
    
    @functools.wraps(f)
    def new_function(self, *args):
        
        # Return any functions that use TimeVars as PvarGenerators
        timevars = [arg for arg in args if isinstance(arg, Pattern.TimeVar)]
        if len(timevars) > 0:
            return Pattern.TimeVar.CreatePvarGenerator(f, *args, pattern=self)

        pat = Pattern()
        # Force pattern types if using lists/tuples
        args = [PatternFormat(arg) for arg in args]
        for i in range(LCM(*[len(arg) for arg in args if (hasattr(arg, '__len__') and not isinstance(arg, PGroup))])):
            pat |= f(self, *[(modi(arg, i) if not isinstance(arg, PGroup) else arg) for arg in args])
        return pat

    new_function.argspec = inspect.getfullargspec(f)
    return new_function

def PatternMethod(f):
    ''' Decorator that makes a function into a metaPattern method'''
    setattr(metaPattern, f.__name__, f)
    return

def StaticPatternMethod(f):
    ''' Decorator that makes a function into a metaPattern static  method'''
    setattr(metaPattern, f.__name__, staticmethod(f))
    return

def ClassPatternMethod(f):
    ''' Decorator that makes a function into a metaPattern class method'''
    setattr(metaPattern, f.__name__, classmethod(f))
    return

# Begin Pattern Abstratct Base Class

class metaPattern(object):
    """ Abstract base class for Patterns """
    WEIGHT = -1
    # data = None
    bracket_style = "[]"
    debugging = False
    meta = []

    def __init__(self, *args):

        if len(args):

            data = args[0]
        
            if type(data) is str:
                
                self.fromString(data)

            elif type(data) is tuple:

                self.data = PGroup(data)
                self.make()

            elif isinstance(data, self.__class__):

                self.data = data.data
                
            else:
                
                self.data = data
                self.make()

        else:

            self.data = []


    def new(self, data):
        """ Returns a new pattern object with this Pattern's class type """
        return self.__class__(data + self.meta)

    def transform(self, func):
        """
        Recursively transforms values and nested patterns
        """
        output = []
        for item in self.data:
            if isinstance(item, (metaPattern, GeneratorPattern)):
                output.append(item.transform(func))
            else:
                output.append(func(item))
        return self.__class__(output)

    def int(self):
        return self.transform(int)

    def float(self):
        return self.transform(float)

    def str(self):
        return self.transform(str)

    @classmethod
    def get_methods(cls):
        """ Returns the methods associated with the `Pattern` class as a list """
        return [attr for attr in dir(cls) if callable(getattr(cls, attr))]

    def get_data(self):
        """ Returns self.data if data is not a single instance of this class, in which 
            case self.data[0].data is returned """
        return self.data

    @classmethod
    def help(cls):
        """ Prints the Pattern class docstring to the console """
        return print(cls.__doc__)
            
    def __len__(self):
        """ Returns the *expanded* length of the pattern such that if the pattern is laced, the
            value is the length of the list multiplied by the lowest-common-multiple of the lengths
            of nested patterns. e.g. the following are identical:
            ```
            >>> print( len(P[0,1,2,[3,4]]) )
            8
            >>> print( len(P[0,1,2,3,0,1,2,4]) )
            8
            ```
        """
        lengths = [1]
        n = 0
        for item in self.data:
            if isinstance(item,  EmptyItem):
                continue
            elif isinstance(item, Pattern):
                lengths.append(len(item))
            n += 1
        return LCM(*lengths) * n

    
    def __str__(self):
        try:
            if len(self.data) > 20:
                val = self.data[:8] + [dots()] + self.data[-8:]
            else:
                val = self.data
        except AttributeError:
            val = self.data
        return "P" + self.bracket_style[:-1] + ( repr(val)[1:-1] ) + self.bracket_style[-1]

    def __repr__(self):
        return str(self)

    # Conversion methods

    def string(self):
        """ Returns a PlayString in string format from the Patterns values """
        string = ""
        for item in self.data:
            if isinstance(item, (PGroup, GeneratorPattern)):
                string += item.string()
            elif isinstance(item, Pattern):
                string += "(" + "".join([(s.string() if hasattr(s, "string") else str(s)) for s in item.data]) + ")"
            else:
                string += str(item)
        return string

    def asGroup(self):
        """ Returns the Pattern as a PGroup """
        return PGroup(self.data)

    def group(self):
        """ Returns the Pattern as a PGroup """
        return PGroup(self.data)

    # TODO -- this is super hacky vv

    def convert_data(self, dtype=float, *args, **kwargs):
        """ Makes a true copy and converts the data to a given data type """
        new = map((lambda x: x.convert_data(dtype, *args, **kwargs) if isinstance(x, metaPattern) else dtype(x, *args, **kwargs)), self.data)
        return self.true_copy(list(new))

    def copy(self):
        """ Returns a copy of the Pattern such that alterations to the
            Pattern.data do not affect the original.
        """
        return self.new(self.data[:])

    def true_copy(self, new_data=None):
        """ Returns a copy of the Pattern such that items within the
            Pattern hold the same state as the original.
        """
        new = self.__class__()
        new.__dict__ = self.__dict__.copy()
        if new_data is not None:
            new.data = new_data
        return new
    
    # Pattern container methods
 
    def __getitem__(self, key):
        """ Calls self.getitem(). Is overridden in `FoxDot.lib.TimeVar`
            for indexing with TimeVars """
        return self.getitem(key)

    def getitem(self, key, get_generator=False):
        """ Called by __getitem__() """
        # We can get multiple values by indexing with a pattern or tuple
        if isinstance(key, (metaPattern, tuple)):
            val = self.new([self.getitem(n) for n in key])
        # We can get items using a slice
        elif isinstance(key, slice):
            val = self.getslice(key.start,  key.stop, key.step)
        else:
            # Get the "nested" single value
            i = key % len(self.data)
            val = self.data[i]
            if isinstance(val, (Pattern, Pattern.Pvar)) or ( isinstance(val, GeneratorPattern) and not get_generator ):
                j   = key // len(self.data)
                val = val.getitem(j, get_generator)
            elif isinstance(val, GeneratorPattern) and get_generator:
                return val
        return val
    
    def __setitem__(self, key, value):
        if isinstance(key, slice):
            self.data[key] = Format(value) # TODO - make sure this works
        else:
            i = key % len(self.data)
            if isinstance(self.data[i], metaPattern):
                j = key // len(self.data)
                self.data[i][j] = value
            else:
                if key >= len(self.data):
                    self.data[i] = Pattern([self.data[i], Format(value)]).stutter([key // len(self.data) , 1])
                else:
                    self.data[i] = Format(value)
        return

    def setitem(self, key, value):
        self.data[key] = Format(value)
            
    def __iter__(self):
        """ Returns a generator object for this Pattern """
        for i in range(len(self)):
            yield self.getitem(i)

    def items(self):
        """ Returns a generator object equivalent to using enumerate() """
        for i, value in enumerate(self):
            yield i, value

    def getslice(self, start, stop, step=1):
        """ Called when using __getitem__ with slice notation """
        start = start if start is not None else 0
        stop  = stop if stop is not None else len(self)
        step  = step if step is not None else 1

        if stop < start:

            stop = (len(self.data) +  stop)

        return Pattern([self[i] for i in range(start, stop, step) ])
            
    def __setslice__(self, i, j, item):
        """ Only works in Python 2 - maybe get rid? """
        self.data[i:j] = Format(item)

    # Integer returning
    
    def count(self, item):
        """ Returns the number of occurrences of item in the Pattern"""
        return self.data.count(item)

    def __add__(self, other):  
        if isinstance(other, GeneratorPattern):
            return other.__radd__(self)
        return PAdd(self, other)

    def __radd__(self, other):  
        if isinstance(other, GeneratorPattern):
            return other.__add__(self)
        return PAdd(self, other)

    def __sub__(self, other):  
        if isinstance(other, GeneratorPattern):
            return other.__rsub__(self)
        return PSub(self, other)
    
    def __rsub__(self, other):  
        if isinstance(other, GeneratorPattern):
            return other.__sub__(self)
        return PSub2(self, other)

    def __mul__(self, other):    
        if isinstance(other, GeneratorPattern):
            return other.__rmul__(self)
        return PMul(self, other)

    def __rmul__(self, other):   
        if isinstance(other, GeneratorPattern):
            return other.__mul__(self)
        return PMul(self, other)

    def __truediv__(self, other):    
        if isinstance(other, GeneratorPattern):
            return other.__rtruediv__(self)
        return PDiv(self, other)

    def __rtruediv__(self, other):    
        if isinstance(other, GeneratorPattern):
            return other.__truediv__(self)
        return PDiv2(self, other)

    def __floordiv__(self, other):  
        if isinstance(other, GeneratorPattern):
            return other.__rfloordiv__(self)
        return PFloor(self, other)

    def __rfloordiv__(self, other):   
        if isinstance(other, GeneratorPattern):
            return other.__floordiv__(self)
        return PFloor2(self, other)

    def __mod__(self, other):  
        if isinstance(other, GeneratorPattern):
            return other.__rmod__(self)
        return PMod(self, other)

    def __rmod__(self, other):  
        if isinstance(other, GeneratorPattern):
            return other.__mod__(self)
        return PMod2(self, other)

    def __pow__(self, other):  
        if isinstance(other, GeneratorPattern):
            return other.__rpow__(self)
        return PPow(self, other)

    def __rpow__(self, other):  
        if isinstance(other, GeneratorPattern):
            return other.__pow__(self)
        return PPow2(self, other)

    def __xor__(self, other):   
        if isinstance(other, GeneratorPattern):
            return other.__rxor__(self)
        return PPow(self, other)

    def __rxor__(self, other):   
        if isinstance(other, GeneratorPattern):
            return other.__xor__(self)
        return PPow2(self, other)

    def __abs__(self):
        return self.new([abs(item) for item in self])

    def __bool__(self):
        """ Returns True if *any* value in the Pattern are greater than zero """
        # NOTE: this used to be ALL 
        return all([bool(item > 0) for item in self])

    def __nonzero__(self):
        return self.__bool__()
    
    def abs(self):
        return abs(self)

    def __invert__(self):
        """ Using the ~ symbol as a prefix to a Pattern will reverse it.
            >>> a = P[:4]
            >>> print(a, ~a)
            P[0, 1, 2, 3], P[3, 2, 1, 0]
        """
        return self.mirror()

    # Piping patterns together using the '|' operator
    
    def __or__(self, other):
        """ Use the '|' symbol to 'pipe' Patterns into on another """
        return self.concat(other)

    def __ror__(self, other):
        """ Use the '|' symbol to 'pipe' Patterns into on another """
        return asStream(other).concat(self)

    # Zipping patterns together using the '&' operator

    def __and__(self, other):
        return self.zip(other)

    def __rand__(self, other):
        return asStream(other).zip(self)
    
    #  Comparisons --> this might be a tricky one
    def __eq__(self, other):
        return PEq(self, other)
    def __ne__(self, other):
        return PNe(self, other)
    def eq(self, other):
        return self.new([int(value == modi(asStream(other), i)) for i, value in enumerate(self)])
    def ne(self, other):
        return self.new([int(value != modi(asStream(other), i)) for i, value in enumerate(self)])
    # def gt(self, other):
    #     return self.__class__([int(value > modi(asStream(other), i)) for i, value in enumerate(self)])
    # def lt(self, other):
    #     return self.__class__([int(value < modi(asStream(other), i)) for i, value in enumerate(self)])
    # def ge(self, other):
    #     return self.__class__([int(value >= modi(asStream(other), i)) for i, value in enumerate(self)])
    # def le(self, other):
    #     return self.__class__([int(value <= modi(asStream(other), i)) for i, value in enumerate(self)])
    def __gt__(self, other):
        #return self.__class__([int(value > modi(asStream(other), i)) for i, value in enumerate(self)])
        values = []
        other = asStream(other)
        for i, value in enumerate(self): # possibly LCM in future
            value = value > other[i]
            if not isinstance(value, PGroup):
                value = int(value)
            values.append(value)
        return self.new(values)

    def __ge__(self, other):
        #return self.__class__([int(value >= modi(asStream(other), i)) for i, value in enumerate(self)])
        values = []
        other = asStream(other)
        for i, value in enumerate(self): # possibly LCM in future
            value = value >= other[i]
            if not isinstance(value, PGroup):
                value = int(value)
            values.append(value)
        return self.new(values)

    def __lt__(self, other):
        #return self.__class__([int(value < modi(asStream(other), i)) for i, value in enumerate(self)])
        values = []
        other = asStream(other)
        for i, value in enumerate(self): # possibly LCM in future
            value = value < other[i]
            if not isinstance(value, PGroup):
                value = int(value)
            values.append(value)
        return self.new(values)

    def __le__(self, other):
        #return self.__class__([int(value <= modi(asStream(other), i)) for i, value in enumerate(self)])
        values = []
        other = asStream(other)
        for i, value in enumerate(self): # possibly LCM in future
            value = value <= other[i]
            if not isinstance(value, PGroup):
                value = int(value)
            values.append(value)
        return self.new(values)
        
    # Methods that return augmented versions of original

    def shuffle(self, n=1):
        """ Returns a new Pattern with shuffled contents. Note: nested patterns
            stay together. To shuffle the contents of nested patterns, use
            `deep_shuffle` or `true_shuffle`.
        """
        items = []

        for i in range(n):
            data = self.data[:]
            shuffle(data)
            items.extend(data)
        return self.new(items)

    def deep_shuffle(self, n=1):
        """ Returns a new Pattern with shuffled contents and shuffles
            any nested patterns. To shuffle the contents of nested patterns
            with the rest of the Pattern's contents, use `true_shuffle`.
        """
        items = []
        for i in range(n):
            data = [(item if not isinstance(item, metaPattern) else item) for item in self.data[:]]
            shuffle(data)
            items.extend(data)
        return self.new(items)

    def true_shuffle(self, n=1):
        """ Returns a new Pattern with completely shuffle contents such
            that nested Patterns are shuffled within the larger Pattern
        """
        items = []
        for i in range(n):
            data = list(self)
            shuffle(data)
            items.extend(data)
        return self.new(items)

    def reverse(self):
        """ Reverses the contents of the Pattern. Nested patterns are
            not reversed. To reverse the contents of nester patterns
            use `Pattern.mirror()`
        """
        new = self.new(self.data[:])
        new.data.reverse()
        return new

    def sort(self, *args, **kwargs):
        """ Used in place of sorted(pattern) to force type """
        return self.new(sorted(self.data, *args, **kwargs))

    def mirror(self):
        """ Reverses the pattern. Differs to `Pattern.reverse()` in that
            all nested patters are also reversed. """
        new = []
        for i in range(len(self.data), 0, -1):

            value = self.data[i-1]

            if hasattr(value, 'mirror'):

                value = value.mirror()
            
            new.append(value)
            
        return self.new(new)

    def stutter(self, n=2, strict=False):
        """ 
        Returns a new Pattern with each item repeated by `n`. Use
        a list of numbers for stutter different items by different
        amount. e.g.
        ```
        >>> P[0, 1, 2, 3].stutter([1,3])
        P[0, 1, 1, 1, 2, 3, 3, 3]
        ```
        Use strict=True to force generator patterns to return the
        same value `n` times in a row.
        """
        n = asStream(n)
        lrg = max(len(self.data), len(n))
        new = []
        for i in range(lrg):
            for j in range(modi(n,i)):
                item = modi(self.data,i)
                if strict and isinstance(item, GeneratorPattern):
                    item = item.copy()
                new.append(item)
        return self.new(new)

    def arp(self, arp_pattern):
        """ Return a new Pattern with each item repeated len(arp_pattern) times
            and incremented by arp_pattern. Useful for arpeggiating. e.g.
            ```
            >>> P[0, 1, 2, 3].arp([0, 2])
            P[0, 2, 1, 3, 2, 4, 3, 5]
            ```
        """
        return self.stutter(len(arp_pattern)) + arp_pattern

    def splice(self, seq, *seqs):
        """ Takes at least list / Pattern and creates a new Pattern by
            adding a value from each pattern in turn to the new pattern.
            e.g.
            ```
            >>> P[0,1,2,3].splice([4,5,6,7],[8,9])
            P[0,4,8,1,5,9,2,6,8,3,7,9]
            ```
        """
        sequences = (self, asStream(seq)) + tuple(asStream(s) for s in seqs)
        size = LCM(*[len(s) for s in sequences])
        new = []
        for i in range(size):
            for seq in sequences:
                new.append(modi(seq, i))
        return self.new(new)

    def invert(self):
        """ Inverts the values with the Pattern.
        """
        new = []
        lrg = float(max(self.data))
        for item in self.data:
            try:
                new.append(item.invert())
            except:
                new.append((((item / lrg) * -1) + 1) * lrg)
        return self.new(new)

    def shufflets(self, n):
        """ Returns a Pattern of 'n' number of PGroups made from shuffled
            versions of the original Pattern """
        new = self.data[:]
        return Pattern([Pattern(new).shuffle().asGroup() for i in range(n)])

    # Loop methods

    @loop_pattern_method
    def pivot(self, i):
        """ Mirrors and rotates the Pattern such that the item at index 'i'
            is in the same place """
        if len(self) > 0:
            mid = len(self) / 2
            if i > mid:
                i = len(self) - i - 1
                new = self.mirror().rotate((2*(i % len(self)))+1)
            else:
                new = self.rotate((2*(i % len(self)))+1).mirror()
        else:
            new = self.copy()
        return new

    @loop_pattern_method
    def accum(self, n=None):
        """ Returns a Pattern that is equivalent to list of sums of that
            Pattern up to that index."""
        if n is None:
            n = len(self)
        new = [0]
        for i in range(n-1):
            new.append( new[-1] + self[i] )
        return self.new(new)

    @loop_pattern_method
    def stretch(self, size):
        """ Stretches (repeats) the contents until len(Pattern) == size """
        new = []
        for n in range(size):
            new.append( modi(self.data, n) )
        new = self.new(new)
        return new

    @loop_pattern_method
    def trim(self, size):
        """ Shortens a pattern until it's length is equal to size - cannot be greater than the length of the current pattern  """
        new = []
        for n in range(min(len(self), size)):
            new.append( modi(self.data, n) )
        new = self.new(new)
        return new

    @loop_pattern_method
    def ltrim(self, size):
        """ Like trim but removes items from the start of the pattern"""
        new = []
        data = self.mirror().data
        for n in range(min(len(self), size)):
            new.append( modi(data, n) )
        new = self.new(new).mirror()
        return new

    @loop_pattern_method
    def loop(self, n, f=None):
        """ Repeats this pattern n times """
        assert n > 0, ".loop() parameter must be greater than 0"
        new = values = list(self)
        for i in range(n - 1):
            if callable(f):
                values = [f(x) for x in values]
            new += list(values)
        return self.new(new)

    @loop_pattern_method
    def duplicate(self, n):
        """ Repeats this pattern n times but keep nested pattern values """
        new = []
        for i in range(n):
            new += self.data
        return self.new(new)

    @loop_pattern_method
    def iter(self, n):
        """ Repeats this pattern n times but doesn't take nested pattern into account for length"""
        return self[:len(self.data)*n]
        #new = []
        #for i in range(len(self.data) * n):
        #    new += self[i]
        #return self.__class__(new)

    @loop_pattern_method
    def swap(self, n=2):
        new = []
        for pair in [list(val) for val in [reversed(self[i:i+n]) for i in range(0, len(self), n)]]:
            for item in pair:
                new.append(item)
        return self.new(new)

    @loop_pattern_method
    def rotate(self, n=1):
        n = int(n)
        new = self.data[n:] + self.data[0:n]
        return self.new(new)

    @loop_pattern_method
    def sample(self, n):
        """ Returns an n-length pattern from a sample"""
        return self.new(random.sample(list(self), n))

    @loop_pattern_method
    def palindrome(self, a=0, b=None):
        """ Returns the original pattern with mirrored version of itself appended.
            a removes values from the middle of the pattern, if positive.
            b removes values from the end of the pattern, should be negative.

            e.g.

            >>> P[:4].palindrome()
            P[0, 1, 2, 3, 3, 2, 1, 0]
            >>> P[:4].palindrome(1)
            P[0, 1, 2, 3, 2, 1, 0]
            >>> P[:4].palindrome(-1)
            P[0, 1, 2, 3, 3, 2, 1]
            >>> P[:4].palindrome(1,-1)
            P[0, 1, 2, 3, 2, 1]

        """
        a = int(a)

        if a < 0:

            a, b = 0, a
        
        return self | self.mirror()[a:b]

    def alt(self, other):
        """ Returns Pattern(other) """
        return self.__class__(other)

    def norm(self):
        """ Returns the pattern with all values between 0 and 1 """
        pos = self - min(self)
        return pos / max(pos)

    def undup(self):
        """ Removes any consecutive duplicate numbers from a Pattern """
        new = []
        last_val = None
        for value in self:
            if value != last_val:
                new.append(value)
            last_val = value                
        return self.new(new)

    def add(self, other):
        return self + other

    @loop_pattern_method
    def limit(self, func, value):
        """ Returns a new Pattern generated by adding elements from
            this Pattern to a new list and repeatedly calling
            `func()` on this list until `func(l)` is greater than `value`
            e.g.
            ```
            >>> print( P[0, 1, 2, 3].limit(sum, 10) )
            P[0, 1, 2, 3, 0, 1, 2]
            ```
        """
        new = []
        i = 0
        while func(new) < value:
            new.append(self[i])
            i+=1
        return self.new(new)

    # Methods that take a non number / pattern argument

    def replace(self, sub, repl):
        """ Replaces any occurrences of "sub" with "repl" """
        new = []
        for item in self.data:
            if isinstance(item, metaPattern):
                new.append(item.replace(sub, repl))
            elif item == sub:
                new.append(repl)
            else:
                new.append(item)
        return self.new(new)

    def submap(self, mapping):
        """ Similar to Pattern.replace, but takes a dictionary of values """
        new = []
        for item in self.data:
            if isinstance(item, metaPattern):
                new.append(item.submap(mapping))
            else:
                new.append(mapping.get(item, item))
        return self.new(new)

    def compress(self, selector):
        """ Removes values from the pattern if the same index in selector is 0. 
            Similar to .select() but maximum length of the new Pattern is the 
            length of the initial Pattern.  """
        s = asStream(selector)
        return self.new([self[i] for i in range(len(self)) if s[i]])

    def select(self, selector):
        """ Removes values from the pattern if the same index in selector is 0  """
        s = asStream(selector)
        # Don't do anything if all values are 1
        if all([value == 1 for value in s]):
            return self
        return self.new([self[i] for i in range(LCM(len(self), len(s))) if s[i]])    

    def layer(self, method, *args, **kwargs):
        """ Zips a pattern with a modified version of itself. Method argument
            can be a function that takes this pattern as its first argument,
            or the name of a Pattern method as a string. """
        
        if callable(method):
            #func = method
            #args = [self.data] + list(args)
            #func = 
            return self.zip(list(map(method, self.data)))
        else:
            func = getattr(self, method)
            assert callable(func)
            return self.zip(func(*args, **kwargs))

    def every(self, n, method, *args, **kwargs):
        """ Returns the pattern looped n-1 times then appended with
            the version returned when method is called on it. """
        return self.loop(n-1).concat(getattr(self, method).__call__(*args, **kwargs))

    def map(self, func):
        """ Returns a Pattern that calls `func` on each item """
        return self.new([(item.map(func) if isinstance(item, metaPattern) else func(item)) for item in self.data])       
    
    def extend(self, seq):
        """ Should return None """
        self.data.extend(map(convert_nested_data, seq))
        return

    def append(self, item):
        """ Converts a new item to PGroup etc and appends """
        self.data.append(convert_nested_data(item))
        return
    
    def i_rotate(self, n=1):
        self.data = self.data[n:] + self.data[0:n]
        return self

    def i_reverse(self):
        self.data.reverse()
        return self

    def i_sort(self):
        self.data = Pattern(sorted(self.data))
        return self

    def i_shuf(self):
        shuffle(self.data)
        return self

    def set(self, index, value):
        self.data[index] = asStream(value)
        return self

    # Boolean tests

    def startswith(self, prefix):
        """ Returns True if the first item in the Pattern is equal to prefix """
        return self.data[0] == prefix
    
    def all(self, func=(lambda x: bool(x))):
        """ Returns true if all of the patterns contents satisfies func(x) - default is nonzero """
        if len(self.data) == 0:
            return False
        
        for item in self.data:
            if not func(item):
                return False
        return True

    # Extension methods
        
    def concat(self, data):
        """ Concatonates this patterns stream with another """
        new = Pattern()
        if isinstance(data, Pattern):
            new.data = self.data + data.data
        elif isinstance(data, (list, str, range)):
            new.data = list(self.data)
            new.data.extend(map(convert_nested_data, data))
        else:
            new.data = list(self.data)
            new.append(data)
        return new

    def zipx(self, other):
        """ Returns a `Pattern` of `PGroups`, where each `PGroup` contains the i-th
            element from each of the argument sequences. The length of the pattern
            is the lowest common multiple of the lengths of the two joining patterns. """
        new = []
        other = asStream(other)
        for i in range(LCM(len(self.data), len(other.data))):
            item1 = self.data[i % len(self.data)]
            item2 = other.data[i % len(other.data)]
            new.append((item1, item2))
        return self.new(new)

    def zip(self, other, dtype=None):
        """ Zips two patterns together. If one item is a tuple, it extends the tuple / PGroup
            i.e. arrow_zip([(0,1),3], [2]) -> [(0,1,2),(3,2)]
        """

        output = Pattern()

        other  = asStream(other)

        dtype = PGroup if dtype is None else dtype

        for i in range(LCM(len(self), len(other))):

            item1 = self.getitem(i, get_generator=True)
            item2 = other.getitem(i, get_generator=True)

            if all([x.__class__== PGroup for x in (item1, item2)]):

                new_item = dtype(item1.data + item2.data)

            elif item1.__class__ == PGroup:

                new_item = dtype(item1.data + [item2])

            elif item2.__class__ == PGroup:

                new_item = dtype([item1] + item2.data)

            else:

                new_item = dtype(item1, item2)

            output.append(new_item)

        return output
    
    def deepzip(self, other):
        new = []
        other = asStream(other)
        for i in range(LCM(len(self.data), len(other.data))):
            p1 = self.data[i % len(self.data)]
            p2 = other.data[i % len(other.data)]
            if isinstance(p1, metaPattern):
                value = p1.deepzip(p2)
            elif isinstance(p2, metaPattern):
                value = p2.deeprzip(p1)
            else:
                value = (p1, p2)
            new.append(value)
        return self.new(new)

    def deeprzip(self, other):
        new = []
        other = asStream(other)
        for i in range(LCM(len(self.data), len(other.data))):
            p1 = self.data[i % len(self.data)]
            p2 = other.data[i % len(other.data)]
            if isinstance(p1, metaPattern):
                value = p1.deeprzip(p2)
            elif isinstance(p2, metaPattern):
                value = p2.deepzip(p1)
            else:
                value = (p2, p1)
            new.append(value)
        return self.new(new)

    # Returns individual elements / slices

    def choose(self):
        """ Returns one randomly selected item """
        return choice(self.data)

    def get_behaviour(self):
        return None

    # Automatic expansion of nested patterns

    def make(self):
        """ This method automatically laces and groups the data """

        #: Force data into an iterable form
        if isinstance(self.data, (str, range)):

            self.data = list(self.data)
            
        elif not isinstance(self.data, PatternType): # not sure about PlayString data
    
            self.data = [self.data]

        self.data = list(map(convert_nested_data, self.data))
            
        # If this only contains a pattern, its redundant to use this as a container
            
        if len(self.data) == 1:

            if isinstance(self.data[0], Pattern):

                self.data = self.data[0].data

            # Replace this pattern with a Pvar if it is the only item in the Pattern itself

            elif isinstance(self.data[0], Pattern.Pvar): # SUPER HACKY

                self.__class__ = self.data[0].__class__
                self.__dict__  = self.data[0].__dict__.copy()
                
        return self

class Pattern(metaPattern):
    """ Base type pattern """
    WEIGHT = 0
    debug = False

class Cycle(Pattern):
    """ Special Case pattern class for cycling values in "every" """
    def __init__(self, *args):
        Pattern.__init__(self, list(args))
    def __str__(self):
        return "Cycle({})".format(Pattern.__str__(self))

class PGroup(metaPattern):
    """
        Class to represent any groupings of notes as denoted by brackets.
        PGroups should only be found within a Pattern object.
        
    """
    WEIGHT = 2
    bracket_style = "()"
    # set this value to negative how many trailing values you don't want treated as "normal"
    ignore = 0

    def __init__(self, seq=[], *args):

        if not args:
            
            if isinstance(seq, metaPattern):

                seq = seq.data

            elif isinstance(seq, tuple):

                seq = list(seq)
        else:

            seq = [seq] + list(args)

        metaPattern.__init__(self, seq)

        # If the PGroup contains patterns, invert it to a Pattern of PGroups
        
        l = [len(p) for p in self.data if isinstance(p, Pattern)]

        if len(l) > 0:

            new_data = []

            for key in range(LCM(*l)):

                new_data.append(self.__class__([item.getitem(key) if isinstance(item, Pattern) else item for item in self.data]))

            self.__class__ = Pattern

            self.data = new_data

    def merge(self, value):
        """ Merge values into one PGroup """
        if hasattr(value, "__len__"):
            new_data = list(value)
        else:
            new_data = [value]
        return self.new(list(self.data) + new_data)

    def flatten(self):
        """ Returns a nested PGroup as un-nested e.g.
        ::

            >>> P(0,(3,5)).flatten()
            P(0, 3, 5)
        """
        values = []
        for item in self:
            if isinstance(item, PGroup):
                values.extend(list(item))
            else:
                values.append(item)
        return PGroup(values)

    def concat(self, data):
        """ Concatonates this patterns stream with another """
        new = PGroup()
        if isinstance(data, PGroup):
            new.data = self.data + data.data
        # Creates a pattern
        elif isinstance(data, Pattern):
            args = list(self.data)
            args.append(data)
            new = PGroup(*args)
        elif isinstance(data, (list, str, range)):
            new.data = list(self.data)
            new.data.extend(map(convert_nested_data, data))
        else:
            new.data = list(self.data)
            new.append(data)
        return new

    def _get_step(self, dur):
        return dur

    def _get_delay(self, delay):
        return 0

    def _get_sample(self):
        return 0

    def calculate_time(self, dur):
        """ Returns a PGroup of durations to use as the delay argument
            when this is a sub-class of `PGroupPrime` """
        values = []
        step  = self._get_step(dur)
        for i, item in enumerate(self):
            delay = self._get_delay( i * step )
            if isinstance(item, PGroup):
                delay += item.calculate_time( step )
            values.append( delay )
        return PGroup(values)

    def calculate_sample(self):
        values = []
        for item in self.data:
            if isinstance(item, PGroup):
                sample = item.calculate_sample()
            else:
                sample = None            
            values.append(sample)
        if all([v is None for v in values]):
            return None
        else:
            return self.__class__(values) # could cause adding issues

    def get_behaviour(self):
        """ Returns a function that changes a player event dictionary """
        def action(event, key):
            this_delay = self.calculate_time(float(event['dur']))
            return self._update_event(event, key, this_delay)
        return action

    def _update_event(self, event, key, delay):
        sample = self.calculate_sample()
        event = self._update_sample(event, sample)
        event = self._update_delay(event, delay)
        return event

    @staticmethod
    def _update_delay(event, delay):
        """ Updates the delay value in the event dictionary """

        event["delay"] = sum_delays(event["delay"], delay)

        return event

    @staticmethod
    def _update_sample(event, sample):
        """ Updates the sample value in the event dictionary """
        if isinstance(sample, PGroup):
            new_sample = sample.replace(None, 0)
            old_sample = event["sample"] * (sample == None)
            event["sample"] = new_sample + old_sample
        elif sample is not None:
            event["sample"] = sample
        return event

    def has_behaviour(self):
        """ Returns True if this is a PGroupPrime or any elements are
            instances of PGroupPrime or its sub-classes"""
        for value in self:
            if isinstance(value, PGroup) and value.has_behaviour():
                return True
        else:
            return False

    def get_name(self):
        return self.__class__.__name__

    def ne(self, other):
        """ Not equals operator """
        values = []
        other  = PatternFormat(other)
        if isinstance(other, Pattern):
            return other.ne(self)
        for i, item in enumerate(self.data): # possibly LCM?
            item = item != modi(other,i)
            if not isinstance(item, metaPattern):
                item = int(item)
            values.append(item)
        #return self.__class__(values)
        return PGroup(values)

    def __ne__(self,  other):
        return self.ne(other)

    def eq(self, other):
        """ equals operator """
        values = []
        other  = PatternFormat(other) # bad function name
        if isinstance(other, Pattern):
            return other.eq(self)
        for i, item in enumerate(self.data): # possibly LCM?
            item = item == modi(other,i)
            if not isinstance(item, metaPattern):
                item = int(item)
            values.append(item)
        # return self.__class__(values)
        return PGroup(values)

    def __hash__(self):
        return hash( self.__key() )

    def __key(self):
        """ Returns a tuple of information to identify this Pattern """
        return (self.__class__, tuple(self.data))

    def __eq__(self, other):
        return self.eq(other)

    def __gt__(self, other):
        values = []
        other  = PatternFormat(other)
        if isinstance(other, Pattern):
            return other < self
        for i, item in enumerate(self): # possibly LCM
            item = item > modi(other,i)
            if not isinstance(item, metaPattern):
                item = int(item)
            values.append(item)
        return self.new(values)

    def __lt__(self, other):
        values = []
        other  = PatternFormat(other)
        if isinstance(other, Pattern):
            return other > self
        for i, item in enumerate(self): # possibly LCM
            item = item < modi(other,i)
            if not isinstance(item, metaPattern):
                item = int(item)
            values.append(item)
        return self.new(values)

    def __ge__(self, other):
        values = []
        other  = PatternFormat(other)
        if isinstance(other, Pattern):
            return other <= self
        for i, item in enumerate(self): # possibly LCM
            item = item >= modi(other,i)
            if not isinstance(item, metaPattern):
                item = int(item)
            values.append(item)
        return self.new(values)

    def __le__(self, other):
        values = []
        other  = PatternFormat(other)
        if isinstance(other, Pattern):
            return other >= self
        for i, item in enumerate(self): # possibly LCM
            item = item <= modi(other,i)
            if not isinstance(item, metaPattern):
                item = int(item)
            values.append(item)
        return self.new(values)

import random

class GeneratorPattern:
    """
        Used for when a Pattern does not generate a set length pattern,
        e.g. random patterns
    """
    MAX_SIZE = 65536
    debugging = False

    def __init__(self, **kwargs):

        # Set the seed if a random pattern

        self.args = tuple()
        self.kwargs = kwargs
            
        self.mod = Pattern()
        self.mod_functions = []
        self.name  = self.__class__.__name__
        self.parent = None
        self.last_value = None
        self.data  = []
        self.index   = 0
        self.cache = {}

    def __repr__(self):
        """ String version is the name of the class and its arguments """
        return "{}({})".format(self.name, self.data)

    @classmethod
    def help(cls):
        return print(cls.__doc__)
        
    def getitem(self, index=None, *args):
        """ Calls self.func(index) to get an item if index is not in
            self.history, otherwise returns self.history[index] """
        if index is None:
            index, self.index = self.index, self.index + 1
        # If we have already accessed by this index, return the value
        if index in self.cache:
            return self.cache[index]
        else:
            # Calculate new value
            value = self.func(index)
            # Store if we refer to the same index
            self.cache[index] = value
            return value

    @property
    def CACHE_HEAD(self):
        ''' Returns the last value used if it exists '''
        return self.cache.get(self.index - 1)

    def new(self, other, func=Nil):
        """ Creates a new `GeneratorPattern` that references
            this pattern but returns a modified value based on
            func. """
        new = GeneratorPattern()
        new.parent = self
        new.name   = new.parent.name
        new.other  = asStream(other) # We want to store the pattern I think?
        new.data   = "{} {}".format(func.__name__, other)
        new.func   = lambda index: func(new.parent.getitem(index), new.other[index])
        return new

    def func(self, index):
        return index

    @staticmethod
    def from_func(pattern_generator_func):
        """ Create a generator which invokes a given function
            to generate items. The given function should take
            and integer argument and return a pattern item. """
        class CustomGeneratorPattern(GeneratorPattern):
            def func(self, index):
                return pattern_generator_func(index)
        return CustomGeneratorPattern()


    def __int__(self):  
        return int(self.getitem())

    def __float__(self):
        return  float(self.getitem())
    
    # Arithmetic operations create new GeneratorPatterns
    def __add__(self, other):
        return self.new(other, Add)
    def __radd__(self, other):
        return self.new(other, Add)
    def __sub__(self, other):
        return self.new(other, Sub)
    def __rsub__(self, other):
        return self.new(other, rSub)
    def __mul__(self, other):
        return self.new(other, Mul)
    def __rmul__(self, other):
        return self.new(other, Mul)
    def __div__(self, other):
        return self.new(other, Div)
    def __truediv__(self, other):
        return self.new(other, Div)
    def __rdiv__(self, other):
        return self.new(other, rDiv)
    def __rtruediv__(self, other):
        return self.new(other, rDiv)
    def __mod__(self, other):
        return self.new(other,  Mod)
    def __rmod__(self, other):
        return self.new(other, rMod)
    # Container methods
    def __iter__(self):
        for i in range(self.MAX_SIZE):
            yield self[i]
            
    def __getitem__(self, key):
        if type(key) is int:
            return self.getitem(key)
        elif type(key) is slice:
            a = key.start if key.start else 0
            b = key.stop
            c = key.step if key.step else 1
            return Pattern([self[i] for i in range(a, b, c)])

    def dup(self, n=2):
        """ Returns a PGroup with n lots of the Generator """
        return PGroup([self.__class__(*self.args, **self.kwargs) for i in range(n)])

    def transform(self, func):
        """ Use func, which should take 1 argument, to transform the values in a generator pattern. Trivial example:
            myGenerator.transform(lambda x: 0 if x in (0,1,2) else 3)
        """
        return self.new(None, lambda a, b: func(a))

    def map(self, mapping, default=0):
        """ Using .transform() to map values via a dictionary

            ::
                a = PRand([0,1])
                b = a.map({0: 16, 1: 25})

        """
        return self.transform( lambda value: mapping.get(value, default) )

    def copy(self):
        '''
        Returns a new Pattern Generator with same inputs
        '''
        return self.__class__(*self.args, **self.kwargs)

        # TODO - handle callables
        # funcs = {}
        
        # for key, value in mapping.items():
            
        #     # We can map using a function
            
        #     if callable(key) and callable(value):

        #         funcs[partial(lambda: key(self.now()))]  = partial(lambda: value(self.now()))

        #     elif callable(key) and not callable(value):

        #         funcs[partial(lambda: key(self.now()))]  = partial(lambda e: e, value)

        #     elif callable(value):

        #         funcs[partial(lambda e: self.now() == e, key)] = partial(lambda: value(self.now()))

        #     else:
        #         # one-to-one mapping
        #         funcs[partial(lambda e: self.now() == e, key)] = partial(lambda e: e, value)

        # def mapping_function(a, b):
        #     for func, result in funcs.items():
        #         if bool(func()) is True:
        #             value = result()
        #             break
        #     else:
        #         value = default
        #     return value

        # new = self.child(0)        
        # new.calculate = mapping_function
        # return new


class PatternContainer(metaPattern):
    def getitem(self, key, *args):
        key = key % len(self)
        return self.data[key]
    def __len__(self):
        return len(self.data)
    def __str__(self):
        return str(self.data)
    def __repr__(self):
        return str(self)

class EmptyItem(object):
    """ Can be used in a pattern and and is essentially not there """
    def __init__(self):
        pass
    def __repr__(self):
        return "_"

"""    Utility functions and data
"""

# Used to force any non-pattern data into a Pattern

PatternType = (Pattern, list)

def asStream(data):
    """ Forces any data into a [pattern] form """
    return data if isinstance(data, Pattern) else Pattern(data)

def PatternFormat(data):
    """ If data is a list, returns Pattern(data). If data is a tuple, returns PGroup(data).
        Returns data if neither. """
    if isinstance(data, list):
        return Pattern(data)
    if isinstance(data, tuple):
        return PGroup(data)
    return data

def PatternInput(data):
    if isinstance(data, GeneratorPattern):
        return data
    return asStream(data)

Format = PatternFormat ## TODO - Remove this

def convert_nested_data(data):
    """ Converts a piece of data in a pattern to a PGroup/Pattern as appropriate """
    from renardo_lib.Constants import NoneConst

    if isinstance(data, (int, float)):

        return data

    elif data == None:

        return NoneConst()

    elif type(data) is tuple:
        
        return PGroup(data)
    
    elif type(data) is list or (type(data) is str and len(data) > 1):
    
        return Pattern(data)

    else:

        return data

def patternclass(a, b):
    return PGroup if isinstance(a, PGroup) and isinstance(b, PGroup) else Pattern

def Convert(*args):
    """ Returns tuples/PGroups as PGroups, and anything else as Patterns """
    PatternTypes = []
    for val in args:
        if isinstance(val, (Pattern, PGroup)):
            PatternTypes.append(val)
        elif isinstance(val, tuple):
            PatternTypes.append(PGroup(val))
        else:
            PatternTypes.append(Pattern(val))
    return PatternTypes if len(PatternTypes) > 0 else PatternTypes[0]

def asPattern(item):
    if isinstance(item, metaPattern):
        return item
    if isinstance(item, list):
        return Pattern(item)
    if isinstance(item, tuple):
        return PGroup(item)
    return Pattern(item)

def pattern_depth(pat):
    """ Returns the level of nested arrays """	
    total = 1
    for item in pat:
        if isinstance(item, PGroup):
            depth = pattern_depth(item)
            if depth + 1 > total:
                total = depth + 1
    return total

def equal_values(this, that):
    """ Returns True if this == that """
    comp = this == that
    if isinstance(comp, metaPattern):
        return all(list(comp))        
    else:
        return comp

def group_modi(pgroup, index):
    """ Returns value from pgroup that modular indexes nested groups """
    std_type = (int, float, str, bool)
    if isinstance(pgroup, Pattern.TimeVar) and isinstance(pgroup.now(), std_type):
            return pgroup
    elif isinstance(pgroup, std_type):
        return pgroup
    try:
        return group_modi(pgroup[index % len(pgroup)], index // len(pgroup))
    except(TypeError, AttributeError, ZeroDivisionError):
        return pgroup

def get_avg_if(item1, item2, func = lambda x: x != 0):
    if isinstance(item1, PGroup):
        result = item1.avg_if(item2, func)
    elif isinstance(item2, PGroup):
        result = item2.avg_if(item1, func)
    else:
        result = avg_if_func(item1, item2, func)
    return result

def sum_delays(a, b):
    if bool(a == b):
        return a
    
    if not isinstance(a, PGroup):
        
        a = PGroup(a)
    
    if not isinstance(b, PGroup):
        
        b = PGroup(b)

    sml, lrg = sorted((a, b), key=lambda x: len(x))

    if all([item in lrg for item in sml]):

        value = lrg

    else:

        value = a + b

    return value if len(value) > 1 else value[0]


def force_pattern_args(f):
    """ Wrapper for forcing arguments to be a Pattern """
    def new_func(*args, **kwargs):
        new_args = tuple(x if isinstance(x, metaPattern) else PGroup(x) for x in args)
        new_kwargs = {
            key: value if isinstance(value, metaPattern)
            else value 
            for key, value in kwargs.items()
        }
        return f(*new_args, **new_kwargs)
    return new_func