1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
from renardo_lib.Patterns.Main import PGroup, PatternMethod, GeneratorPattern, sum_delays
from renardo_lib.Utils import modi, LCM
class PGroupPrime(PGroup):
WEIGHT = 1
""" Base class for PGroups with "behavior" that affect a Player's event dictionary """
def change_state(self):
""" To be overridden by any PGroupPrime that changes state after access by a Player """
return
def convert_data(self, *args, **kwargs):
self.change_state()
return PGroup.convert_data(self, *args, **kwargs)
def has_behaviour(self):
return True
def _get_step(self, dur):
return float(dur) / len(self)
def _get_delay(self, delay):
return delay
class metaPGroupPrime(PGroupPrime):
""" Base class for PGroups that take any extra arguments to be stored """
WEIGHT = 3
def __init__(self, *args, **kwargs):
PGroupPrime.__init__(self, *args, **kwargs)
if isinstance(self, PGroup):
self.meta = self.data[self.ignore:]
self.data = self.data[:self.ignore]
class PGroupStar(PGroupPrime):
""" Stutters the values over the length of and event's 'dur' """
bracket_style="*()"
class PGroupPlus(PGroupPrime):
""" Stutters the values over the length of and event's 'sus' """
bracket_style="+()"
def get_behaviour(self):
""" Returns a function that modulates a player event dictionary """
def action(event, key):
this_delay = self.calculate_time(float(event['sus']))
return self._update_event(event, key, this_delay)
return action
class PGroupPow(PGroupPrime):
""" Stutters a shuffled version the values over the length of and event's 'dur' """
bracket_style="**()"
def calculate_time(self, dur):
return PGroupPrime.calculate_time(self, dur).shuffle()
class PGroupDiv(PGroupPrime):
""" Stutter every other request """
bracket_style="/()"
counter = 0
def __init__(self, *args, **kwargs):
PGroupPrime.__init__(self, *args, **kwargs)
def change_state(self):
self.counter += 1
def calculate_time(self, dur):
if self.counter % 2 == 1:
return PGroupPrime.calculate_time(self, dur)
else:
return 0
class PGroupMod(PGroupPlus):
""" OBSOLETE
--------
Useful for when you want many nested groups. This PGroup flattens the original
but the delay times are calculated in the same way as if the values were neseted
"""
bracket_style="%()"
def __len__(self):
return len([item for item in self])
def getitem(self, index):
return list(self)[index]
def _get_step(self, dur):
return float(dur) / len(self.data)
def calculate_time(self, dur):
""" Returns a PGroup of durations to use as the delay argument
when this is a sub-class of `PGroupPrime` """
values = []
step = self._get_step(dur)
for i, item in enumerate(self.data):
delay = self._get_delay( i * step )
if hasattr(item, "calculate_time"):
delay += item.calculate_time( step )
if isinstance(delay, PGroup):
values.extend(list(delay))
else:
values.append( delay )
return PGroup(values)
def __iter__(self):
return self.get_iter(self.data)
@staticmethod
def get_iter(group):
""" Recursively unpacks nested PGroup into an un-nested group"""
for item in group:
if isinstance(item, PGroup):
for sub in PGroupMod.get_iter(item.data):
yield sub
else:
yield item
class PGroupOr(metaPGroupPrime):
""" Used to specify `sample` values, usually from within a play string using values
between "bar" signs e.g. "|x2|" """
bracket_style="|()"
ignore = -1
def __init__(self, seq=[]):
metaPGroupPrime.__init__(self, seq)
# May be changed to a Pattern
if self.__class__ is not PGroupOr:
return
self.data = self.data[:1] # Make sure we only have 1 element for data
def calculate_sample(self):
sample = self.meta[0]
if isinstance(sample, PGroupPrime):
sample = PGroup(sample)
elif isinstance(sample, GeneratorPattern):
sample = sample.getitem()
return sample
def calculate_time(self, *args, **kwargs):
""" Return a single value, as its always "length" 1 """
char_delay = PGroupPrime.calculate_time(self, *args, **kwargs)[0]
samp_delay = self.meta[0].calculate_time(*args, **kwargs) if isinstance(self.meta[0], PGroup) else 0
return sum_delays(char_delay, samp_delay)
def _get_delay(self, *args, **kwargs):
return 0
def _get_step(self, dur):
return dur
#class PGroupFloorDiv(PGroupPrime):
# """ Unused """
# bracket_style="//()"
#class PGroupSub(PGroupPrime):
# """ Unused """
# bracket_style="-()"
class PGroupXor(metaPGroupPrime):
""" The delay of this PGroup is specified by the last value (not included in the data) """
bracket_style="^()"
ignore = -1
def __init__(self, seq=[]):
if isinstance(seq, self.__class__):
self.data = seq.data
self.meta = seq.meta
return
metaPGroupPrime.__init__(self, seq)
# May be changed to a Pattern
if self.__class__ is not PGroupXor:
return
# Make sure we have at least 1 item of data
if len(self.data) == 0 and len(self.meta) == 1:
self.data = self.meta
self.meta = [0]
def _get_step(self, dur):
return self.meta[0]
def _get_delay(self, delay):
return delay
class PGroupAnd(PGroupPrime):
""" Unused """
bracket_style="&()"
delay = 0
def __init__(self, args):
PGroupPrime.__init__(self, args[0])
if len(args) > 0:
self.delay = args[1]
def calculate_step(self, i, dur):
return i * self.delay
# Define any pattern methods that use PGroupPrimes
@PatternMethod
def offadd(self, value, dur=0.5):
return self + PGroupXor((0, value, dur))
@PatternMethod
def offmul(self, value, dur=0.5):
#return self * PGroupXor(1, value).set_delay(dur)
return self * PGroupXor((1, value, dur))
@PatternMethod
def offlayer(self, method, dur=0.5, *args, **kwargs):
""" Zips a pattern with a modified version of itself. Method argument
can be a function that takes this pattern as its first argument,
or the name of a Pattern method as a string. """
if callable(method):
func = method
args = [self] + list(args)
else:
func = getattr(self, method)
assert callable(func)
return self.zip(func(*args, **kwargs), dtype=lambda a, b: PGroupXor([a, b, dur]))
@PatternMethod
def amen(self, size=2):
""" Merges and laces the first and last two items such that a
drum pattern "x-o-" would become "(x[xo])-o([-o]-)" """
new = []
for n in range( LCM(len(self), 4) ):
if n % 4 == 0:
new.append([self[n], PGroupPlus(self[n], modi(self, n + size))])
elif n % 4 == size:
new.append( [self[n]]*3+[self[n-1]] )
elif n % 4 == size + 1:
new.append( [PGroupPlus(self[n], self[n-1]), [self[n], self[n-1]] ] )
else:
new.append(self[n])
return self.__class__(new)
@PatternMethod
def bubble(self, size=2):
""" Merges and laces the first and last two items such that a
drum pattern "x-o-" would become "(x[xo])-o([-o]-)" """
new = []
for n in range(len(self.data)):
if n % 4 == 0:
new.append([self.data[n], PGroupPlus(self.data[n], modi(self.data, n + size))])
elif n % 4 == 2:
new.append( [self.data[n]]*3+[self.data[n-1]] )
elif n % 4 == 3:
new.append( [PGroupPlus(self.data[n], self.data[n-1]), [self.data[n], self.data[n-1]] ] )
else:
new.append(self.data[n])
return self.__class__(new)
|