1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
|
"""
Sequences.py
------------
All patterns inherit from Base.Pattern. There are two types of pattern:
1. Container types
* Similar to lists but with different mathematical operators
2. Generator types
* Similar to generators but can be indexed (returns values based on functions)
"""
import random
import math
from renardo_lib.Patterns.Main import Pattern, asStream, loop_pattern_func
from renardo_lib.Patterns.PGroups import (
PGroupAnd, GeneratorPattern, PGroup, PGroupStar,
PGroupPow, PGroupXor, PGroupOr,
PGroupPlus, PGroupDiv, modi
)
from renardo_lib.Patterns.Operations import LCM
from renardo_lib.Patterns.Generators import PRand
from renardo_lib.Utils import sliceToRange, EuclidsAlgorithm, PulsesToDurations
MAX_SIZE = 2048
#==============================#
# 1. P[] & P() #
#==============================#
class __pattern__(object):
''' Used to define lists as patterns:
`P[1,2,3]` is equivalent to `Pattern([1,2,3])` and
`P(1,2,3)` is equivalent to `Pattern((1,2,3))` and
`P+(1,2,3)` is equivalient to `Pattern((1,2,3))`.
Ranges can be created using slicing, e.g. `P[1:6:2]` will generate the range
1 to 6 in steps of 2, thus creating the Pattern `[1, 3, 5]`. Slices can be
combined with other values in a Pattern such that `P[0,2,1:10]` will return
the Pattern `P[0, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9]`
'''
def __getitem__(self, args):
if isinstance(args, Pattern):
return args
elif isinstance(args, (Pattern.TimeVar, Pattern.PlayerKey)):
data = [args]
elif hasattr(args, '__iter__') and not isinstance(args, (str, bytes, GeneratorPattern, PGroup)):
data = []
for item in args:
if type(item) is slice:
data.extend(sliceToRange(item))
else:
data.append(item)
elif type(args) is slice:
data = sliceToRange(args)
else:
data = args
return Pattern(data)
def __call__(self, *args):
return PGroup(args if len(args) > 1 else args[0])
def __mul__(self, other):
""" P*[0,1,2] returns PRand([0,1,2])
P*(0,1,2) returns PGroupStar(0,1,2)
"""
if isinstance(other, (list, Pattern)):
return PRand(list(other))
else:
return PGroupStar(other)
def __pow__(self, other):
""" P**(x1, x2,...,xn) - Returns scrambled version """
return PGroupPow(other)
def __xor__(self, other):
""" P^(x1, x2,..., dur) - Returns a PGroup that delays each value by dur * n """
return PGroupXor(other)
def __or__(self, other):
""" P|("x", 2) """
return PGroupOr(other)
def __add__(self, other):
return PGroupPlus(other)
def __radd__(self, other):
return self + other
def __truediv__(self, other):
return PGroupDiv(other)
def __mod__(self, other):
if isinstance(other, list):
return Pattern().fromString(other[0], flat=True)
return PGroupMod(other)
def __and__(self, other):
return PGroupAnd(other)
def __invert__(self):
return __reverse_pattern__()
class __reverse_pattern__(__pattern__):
def __getattr__(self, name):
return ~object.__getattr__(self, name)
# This is a pattern creator
P = __pattern__()
#================================#
# 2. Pattern Functions #
#================================#
#: Pattern functions that take patterns as arguments
def PShuf(seq):
''' PShuf(seq) -> Returns a shuffled version of seq'''
return Pattern(seq).shuffle()
def PAlt(pat1, pat2, *patN):
''' Returns a Pattern generated by alternating the values in the given sequences '''
data = []
item = [asStream(p) for p in [pat1, pat2] + list(patN)]
size = LCM(*[len(i) for i in item])
for n in range(size):
for i in item:
data.append(modi(i,n))
return Pattern(data)
def PStretch(seq, size):
''' Returns 'seq' as a Pattern and looped until its length is 'size'
e.g. `PStretch([0,1,2], 5)` returns `P[0, 1, 2, 0, 1]` '''
return Pattern(seq).stretch(size)
def PPairs(seq, func=lambda n: 8-n):
""" Laces a sequence with a second sequence obtained
by performing a function on the original. By default this is
`lambda n: 8 - n`. """
i = 0
data = []
for item in seq:
data.append(item)
data.append(func(item))
i += 1
if i >= MAX_SIZE:
break
return Pattern(data)
def PZip(pat1, pat2, *patN):
''' Creates a Pattern that 'zips' together multiple patterns. `PZip([0,1,2], [3,4])`
will create the Pattern `P[(0, 3), (1, 4), (2, 3), (0, 4), (1, 3), (2, 4)]` '''
l, p = [], []
for pat in [pat1, pat2] + list(patN):
p.append(P[pat])
l.append(len(p[-1]))
length = LCM(*l)
return Pattern([tuple(pat[i] for pat in p) for i in range(length)])
def PZip2(pat1, pat2, rule=lambda a, b: True):
''' Like `PZip` but only uses two Patterns. Zips together values if they satisfy the rule. '''
length = LCM(len(pat1), len(pat2))
data = []
i = 0
while i < length:
a, b = modi(pat1,i), modi(pat2,i)
if rule(a, b):
data.append((a,b))
i += 1
return Pattern(data)
@loop_pattern_func
def PStutter(x, n=2):
""" PStutter(seq, n) -> Creates a pattern such that each item in the array is repeated n times (n can be a pattern) """
return Pattern([x for i in range(n)])
@loop_pattern_func
def PSq(a=1, b=2, c=3):
''' Returns a Pattern of square numbers in the range a to a+c '''
return Pattern([x**b for x in range(a,a+c)])
@loop_pattern_func
def P10(n):
''' Returns an n-length Pattern of a randomly generated series of 1's and 0's '''
return Pattern([random.choice((0,1)) for i in range(int(n))])
@loop_pattern_func
def PStep(n, value, default=0):
''' Returns a Pattern that every n-term is 'value' otherwise 'default' '''
return Pattern([default] * (n-1) + [value])
@loop_pattern_func
def PSum(n, total, **kwargs):
"""
Returns a Pattern of length 'n' that sums to equal 'total'
e.g. PSum(3,8) -> P[3, 3, 2]
PSum(5,4) -> P[1, 0.75, 0.75, 0.75, 0.75]
"""
lim = kwargs.get("lim", 0.125)
data = [total + 1]
step = 1
while sum(data) > total:
data = [step for x in range(n)]
step *= 0.5
i = 0
while sum(data) < total and step >= lim:
if sum(data) + step > total:
step *= 0.5
else:
data[i % n] += step
i += 1
return Pattern(data)
@loop_pattern_func
def PRange(start, stop=None, step=1):
""" Returns a Pattern equivalent to ``Pattern(range(start, stop, step))`` """
if stop is None:
start, stop = 0, start
if start == stop:
return Pattern(start)
if (start > stop and step > 0) or (start < stop and step < 0):
step = step*-1
return Pattern(list(range(start, stop, step)))
@loop_pattern_func
def PTri(start, stop=None, step=1):
""" Returns a Pattern equivalent to ``Pattern(range(start, stop, step))`` with its reversed form
appended."""
if stop is None:
start, stop = 0, start
pat = PRange(start, stop, step)
return pat | pat.reverse()[1:-1]
@loop_pattern_func
def PSine(n=16):
""" Returns values of one cycle of sine wave split into 'n' parts """
i = (2 * math.pi) / n
return Pattern([math.sin(i * j) for j in range(int(n))])
@loop_pattern_func
def PEuclid(n, k):
''' Returns the Euclidean rhythm which spreads 'n' pulses over 'k' steps as evenly as possible.
e.g. `PEuclid(3, 8)` will return `P[1, 0, 0, 1, 0, 0, 1, 0]` '''
return Pattern( EuclidsAlgorithm(n, k) )
@loop_pattern_func
def PEuclid2(n, k, lo, hi):
''' Same as PEuclid except it returns an array filled with 'lo' value instead of 0
and 'hi' value instead of 1. Can be used to generate characters patterns used to
play sample like play(PEuclid2(3,8,'-','X')) will be equivalent to
play(P['X', '-', '-', 'X', '-', '-', 'X', '-'])
that's like saying play("X--X--X-")
'''
return Pattern( EuclidsAlgorithm(n, k, lo, hi) )
@loop_pattern_func
def PBern(size=16, ratio=0.5):
""" Returns a pattern of 1s and 0s based on the ratio value (between 0 and 1).
This is called a Bernoulli sequence. """
return Pattern([int(random.random() < ratio) for n in range(size)])
def PBeat(string, start=0, dur=0.5):
""" Returns a Pattern of durations based on an input string where
non-whitespace denote a pulse e.g.
::
>>> PBeat("x xxx x")
P[1, 0.5, 0.5, 1, 0.5]
"""
data = [int(char != " ") for char in list(string)]
pattern = Pattern(PulsesToDurations( data ))
if start != 0:
pattern = pattern.rotate(int(start))
return pattern * dur
@loop_pattern_func
def PDur(n, k, start=0, dur=0.25):
""" Returns the *actual* durations based on Euclidean rhythms (see PEuclid) where dur
is the length of each step.
::
>>> PDur(3, 8)
P[0.75, 0.75, 0.5]
>>> PDur(5, 16)
P[0.75, 0.75, 0.75, 0.75, 1]
"""
# If we have more pulses then steps, double the steps and decrease the duration
while n > k:
k = k * 2
dur = dur / 2
pattern = Pattern(PulsesToDurations( EuclidsAlgorithm(n, k) ))
if start != 0:
pattern = pattern.rotate(int(start))
return pattern * dur
@loop_pattern_func # forces it into a stream instead of Group
def PDelay(*args):
return PDur(*args).accum().group()
@loop_pattern_func
def PStrum(n=4):
""" Returns a pattern of durations similar to how you might strum a guitar """
return (Pattern([1,1/2]).stutter([1,n + 1])|Pattern([1.5,1/2]).stutter([1,n])|1)
def PQuicken(dur=1/2, stepsize=3, steps=6):
""" Returns a PGroup of delay amounts that gradually decrease """
delay = []
count = 0
for i in range(steps):
for j in range(stepsize-1):
delay.append( count )
count += dur / stepsize
dur /= stepsize
return PGroup(delay)
def PRhythm(durations):
""" Converts all tuples/PGroups into delays calculated using the PDur algorithm.
e.g.
PRhythm([1,(3,8)]) -> P[1,(2,0.75,1.5)]
*work in progress*
"""
if len(durations) == 1:
item = durations[0]
if isinstance(item, (tuple, PGroup)):
return PDur(*item)
else:
return durations
else:
durations = asStream(durations).data
output = Pattern()
for i in range(len( asStream(durations).data ) ):
item = durations[i]
if isinstance(item, (list, Pattern)):
value = PRhythm(item)
elif isinstance(item, (tuple, PGroup)):
dur = PDur(*item)
value = PGroup(sum(dur)|dur.accum()[1:])
else:
value = item
output.append(value)
return output
def PJoin(patterns):
""" Joins a list of patterns together """
data = []
for pattern in patterns:
data.extend(pattern)
return Pattern(data)
|