1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
|
"""
Clock management for scheduling notes and functions. Anything 'callable', such as a function
or instance with a `__call__` method, can be scheduled. An instance of `TempoClock` is created
when FoxDot started up called `Clock`, which is used by `Player` instances to schedule musical
events.
The `TempoClock` is also responsible for sending the osc messages to SuperCollider. It contains
a queue of event blocks, instances of the `QueueBlock` class, which themselves contain queue
items, instances of the `QueueObj` class, which themseles contain the actual object or function
to be called. The `TempoClock` is continually running and checks if any queue block should
be activated. A queue block has a "beat" value for which its contents should be activated. To make
sure that events happen on time, the `TempoClock` will begin processing the contents 0.25
seconds before it is *actually* meant to happen in case there is a large amount to process. When
a queue block is activated, a new thread is created to process all of the callable objects it
contains. If it calls a `Player` object, the queue block keeps track of the OSC messages generated
until all `Player` objects in the block have been called. At this point the thread is told to
sleep until the remainder of the 0.25 seconds has passed. This value is stored in `Clock.latency`
and is adjustable. If you find that there is a noticeable jitter between events, i.e. irregular
beat lengths, you can increase the latency by simply evaluating the following in FoxDot:
Clock.latency = 0.5
To stop the clock from scheduling further events, use the `Clock.clear()` method, which is
bound to the shortcut key, `Ctrl+.`. You can schedule non-player objects in the clock by
using `Clock.schedule(func, beat, args, kwargs)`. By default `beat` is set to the next
bar in the clock, but you use `Clock.now() + n` or `Clock.next_bar() + n` to schedule a function
in the future at a specific time.
To change the tempo of the clock, just set the bpm attribute using `Clock.bpm=val`. The change
in tempo will occur at the start of the next bar so be careful if you schedule this action within
a function like this:
def myFunc():
print("bpm change!")
Clock.bpm+=50
This will print the string `"bpm change"` at the next bar and change the bpm value at the
start of the *following* bar. The reason for this is to make it easier for calculating
currently clock times when using a `TimeVar` instance (See docs on TimeVar.py) as a tempo.
You can change the clock's time signature as you would change the tempo by setting the
`meter` attribute to a tuple with two values. So for 3/4 time you would use the follwing
code:
Clock.meter = (3,4)
"""
from types import MethodType
import time
from traceback import format_exc as error_stack
import sys
import threading
import inspect
from renardo_lib.Players import Player
from renardo_lib.Repeat import MethodCall
from renardo_lib.Patterns import asStream
from renardo_lib.TimeVar import TimeVar
from renardo_lib.Midi import MidiIn, MIDIDeviceNotFound
from renardo_lib.Utils import modi
from renardo_lib.ServerManager import TempoClient, ServerManager, RequestTimeout
from renardo_lib.Settings import CPU_USAGE
class TempoClock(object):
tempo_server = None
tempo_client = None
waiting_for_sync = False
def __init__(self, bpm=120.0, meter=(4,4)):
# Flag this when done init
self.__setup = False
# debug information
self.largest_sleep_time = 0
self.last_block_dur = 0.0
# Storing time as a float
self.dtype=float
self.beat = self.dtype(0) # Beats elapsed
self.last_now_call = self.dtype(0)
self.ticking = True #??
# Player Objects stored here
self.playing = []
# Store history of osc messages and functions in here
self.history = History()
# All other scheduled items go here
self.items = []
# General set up
self.bpm = bpm
self.meter = meter
# Create the queue
self.queue = Queue(self)
self.current_block = None
# Midi Clock In
self.midi_clock = None
# EspGrid sync
self.espgrid = None
# Flag for next_bar wrapper
self.now_flag = False
# Can be configured
self.latency_values = [0.25, 0.5, 0.75]
self.latency = 0.25 # Time between starting processing osc messages and sending to server
self.nudge = 0.0 # If you want to synchronise with something external, adjust the nudge
self.hard_nudge = 0.0
self.bpm_start_time = time.time()
self.bpm_start_beat = 0
# The duration to sleep while continually looping
self.sleep_values = [0.01, 0.001, 0.0001]
self.sleep_time = self.sleep_values[CPU_USAGE]
self.midi_nudge = 0
# Debug
self.debugging = False
self.__setup = True
# If one object is going to played
self.solo = SoloPlayer()
self.thread = threading.Thread(target=self.run)
def sync_to_espgrid(self, host="localhost", port=5510):
""" Connects to an EspGrid instance """
from renardo_lib.EspGrid import EspGrid
self.espgrid = EspGrid((host, port))
try:
tempo = self.espgrid.get_tempo()
except RequestTimeout:
err = "Unable to reach EspGrid. Make sure the application is running and try again."
raise RequestTimeout(err)
self.espgrid.set_clock_mode(2)
self.schedule(lambda: self._espgrid_update_tempo(True))
# self._espgrid_update_tempo(True) # could schedule this for next bar?
return
def _espgrid_update_tempo(self, force=False):
""" Retrieves the current tempo from EspGrid and updates internal values """
data = self.espgrid.get_tempo()
# If the tempo hasn't been started, start it here and get updated data
if data[0] == 0:
self.espgrid.start_tempo()
data = self.espgrid.get_tempo()
if force or (data[1] != self.bpm):
self.bpm_start_time = float("{}.{}".format(data[2], data[3]))
self.bpm_start_beat = data[4]
object.__setattr__(self, "bpm", self._convert_json_bpm(data[1]))
# self.schedule(self._espgrid_update_tempo)
self.schedule(self._espgrid_update_tempo, int(self.now() + 1))
return
def reset(self):
""" Deprecated """
self.time = self.dtype(0)
self.beat = self.dtype(0)
self.start_time = time.time()
return
@classmethod
def set_server(cls, server):
""" Sets the destination for OSC messages being compiled (the server is also the class
that compiles them) via objects in the clock. Should be an instance of ServerManager -
see ServerManager.py for more. """
assert isinstance(server, ServerManager)
cls.server = server
return
@classmethod
def add_method(cls, func):
setattr(cls, func.__name__, func)
def start_tempo_server(self, serv, **kwargs):
""" Starts listening for FoxDot clients connecting over a network. This uses
a TempoClient instance from ServerManager.py """
self.tempo_server = serv(self, **kwargs)
self.tempo_server.start()
return
def kill_tempo_server(self):
""" Kills the tempo server """
if self.tempo_server is not None:
self.tempo_server.kill()
return
def flag_wait_for_sync(self, value):
self.waiting_for_sync = bool(value)
def connect(self, ip_address, port=57999):
try:
self.tempo_client = TempoClient(self)
self.tempo_client.connect(ip_address, port)
self.tempo_client.send(["request"])
self.flag_wait_for_sync(True)
except ConnectionRefusedError as e:
print(e)
pass
def kill_tempo_client(self):
if self.tempo_client is not None:
self.tempo_client.kill()
return
def __str__(self):
return str(self.queue)
def __iter__(self):
for x in self.queue:
yield x
def __len__(self):
return len(self.queue)
def __contains__(self, item):
return item in self.items
def update_tempo_now(self, bpm):
""" emergency override for updating tempo"""
self.last_now_call = self.bpm_start_time = time.time()
self.bpm_start_beat = self.now()
object.__setattr__(self, "bpm", self._convert_json_bpm(bpm))
# self.update_network_tempo(bpm, start_beat, start_time) -- updates at the bar...
return
def set_tempo(self, bpm, override=False):
""" Short-hand for update_tempo and update_tempo_now """
return self.update_tempo_now(bpm) if override else self.update_tempo(bpm)
def update_tempo(self, bpm):
""" Schedules the bpm change at the next bar, returns the beat and start time of the next change """
try:
assert bpm > 0, "Tempo must be a positive number"
except AssertionError as err:
raise(ValueError(err))
next_bar = self.next_bar()
bpm_start_time = self.get_time_at_beat(next_bar)
bpm_start_beat = next_bar
def func():
if self.espgrid is not None:
self.espgrid.set_tempo(bpm)
else:
object.__setattr__(self, "bpm", self._convert_json_bpm(bpm))
self.last_now_call = self.bpm_start_time = bpm_start_time
self.bpm_start_beat = bpm_start_beat
# Give next bar value to bpm_start_beat
self.schedule(func, next_bar, is_priority=True)
return bpm_start_beat, bpm_start_time
def update_tempo_from_connection(self, bpm, bpm_start_beat, bpm_start_time, schedule_now=False):
""" Sets the bpm externally from another connected instance of FoxDot """
def func():
self.last_now_call = self.bpm_start_time = self.get_time_at_beat(bpm_start_beat)
self.bpm_start_beat = bpm_start_beat
object.__setattr__(self, "bpm", self._convert_json_bpm(bpm))
# Might be changing immediately
if schedule_now:
func()
else:
self.schedule(func, is_priority=True)
return
def update_network_tempo(self, bpm, start_beat, start_time):
""" Updates connected FoxDot instances (client or servers) tempi """
json_value = self._convert_bpm_json(bpm)
# If this is a client, send info to server
if self.tempo_client is not None:
self.tempo_client.update_tempo(json_value, start_beat, start_time)
# If this is a server, send info to clients
if self.tempo_server is not None:
self.tempo_server.update_tempo(None, json_value, start_beat, start_time)
return
def swing(self, amount=0.1):
""" Sets the nudge attribute to var([0, amount * (self.bpm / 120)],1/2)"""
self.nudge = TimeVar([0, amount * (self.bpm / 120)], 1/2) if amount != 0 else 0
return
def set_cpu_usage(self, value):
""" Sets the `sleep_time` attribute to values based on desired high/low/medium cpu usage """
assert 0 <= value <= 2
self.sleep_time = self.sleep_values[value]
return
def set_latency(self, value):
""" Sets the `latency` attribute to values based on desired high/low/medium latency """
assert 0 <= value <= 2
self.latency = self.latency_values[value]
return
def __setattr__(self, attr, value):
if attr == "bpm" and self.__setup:
# If connected to EspGrid, just update that
# if self.espgrid is not None:
# self.espgrid.set_tempo(value)
# else:
# # Schedule for next bar
# start_beat, start_time = self.update_tempo(value)
# # Checks if any peers are connected and updates them also
# self.update_network_tempo(value, start_beat, start_time)
# Schedule for next bar
start_beat, start_time = self.update_tempo(value)
# Checks if any peers are connected and updates them also
self.update_network_tempo(value, start_beat, start_time)
elif attr == "midi_nudge" and self.__setup:
# Adjust nudge for midi devices
self.server.set_midi_nudge(value)
object.__setattr__(self, "midi_nudge", value)
else:
self.__dict__[attr] = value
return
def bar_length(self):
""" Returns the length of a bar in terms of beats """
return (float(self.meter[0]) / self.meter[1]) * 4
def bars(self, n=1):
""" Returns the number of beats in 'n' bars """
return self.bar_length() * n
def beat_dur(self, n=1):
""" Returns the length of n beats in seconds """
return 0 if n == 0 else (60.0 / self.get_bpm()) * n
def beats_to_seconds(self, beats):
return self.beat_dur(beats)
def seconds_to_beats(self, seconds):
""" Returns the number of beats that occur in a time period """
return (self.get_bpm() / 60.0) * seconds
def get_bpm(self):
""" Returns the current beats per minute as a floating point number """
if isinstance(self.bpm, TimeVar):
bpm_val = self.bpm.now(self.beat)
elif self.midi_clock:
bpm_val = self.midi_clock.bpm
else:
bpm_val = self.bpm
return float(bpm_val)
def get_latency(self):
""" Returns self.latency (which is in seconds) as a fraction of a beat """
return self.seconds_to_beats(self.latency)
def get_elapsed_beats_from_last_bpm_change(self):
""" Returns the number of beats that *should* have elapsed since the last tempo change """
return float(self.get_elapsed_seconds_from_last_bpm_change() * (self.get_bpm() / 60))
def get_elapsed_seconds_from_last_bpm_change(self):
""" Returns the time since the last change in bpm """
return self.get_time() - self.bpm_start_time
def get_time(self):
""" Returns current machine clock time with nudges values added """
return time.time() + float(self.nudge) + float(self.hard_nudge)
def get_time_at_beat(self, beat):
""" Returns the time that the local computer's clock will be at 'beat' value """
if isinstance(self.bpm, TimeVar):
t = self.get_time() + self.beat_dur(beat - self.now())
else:
t = self.bpm_start_time + self.beat_dur(beat - self.bpm_start_beat)
return t
def sync_to_midi(self, port=0, sync=True):
""" If there is an available midi-in device sending MIDI Clock messages,
this attempts to follow the tempo of the device. Requies rtmidi """
try:
if sync:
self.midi_clock = MidiIn(port)
elif self.midi_clock:
self.midi_clock.close()
self.midi_clock = None
except MIDIDeviceNotFound as e:
print("{}: No MIDI devices found".format(e))
return
def debug(self, on=True):
""" Toggles debugging information printing to console """
self.debugging = bool(on)
return
def set_time(self, beat):
""" Set the clock time to 'beat' and update players in the clock """
self.start_time = time.time()
self.queue.clear()
self.beat = beat
self.bpm_start_beat = beat
self.bpm_start_time = self.start_time
# self.time = time() - self.start_time
for player in self.playing:
player(count=True)
return
def calculate_nudge(self, time1, time2, latency):
""" Approximates the nudge value of this TempoClock based on the machine time.time()
value from another machine and the latency between them """
# self.hard_nudge = time2 - (time1 + latency)
self.hard_nudge = time1 - time2 - latency
return
def _convert_bpm_json(self, bpm):
if isinstance(bpm, (int, float)):
return float(bpm)
elif isinstance(bpm, TimeVar):
return bpm.json_value()
def json_bpm(self):
""" Returns the bpm in a data type that can be sent over json"""
return self._convert_bpm_json(self.bpm)
def get_sync_info(self):
""" Returns information for synchronisation across multiple FoxDot instances. To be
stored as a JSON object with a "sync" header """
data = {
"sync" : {
"bpm_start_time" : float(self.bpm_start_time),
"bpm_start_beat" : float(self.bpm_start_beat),
"bpm" : self.json_bpm(),
}
}
return data
def _now(self):
""" If the bpm is an int or float, use time since the last bpm change to calculate what the current beat is.
If the bpm is a TimeVar, increase the beat counter by time since last call to _now()"""
if isinstance(self.bpm, (int, float)):
self.beat = self.bpm_start_beat + self.get_elapsed_beats_from_last_bpm_change()
else:
now = self.get_time()
self.beat += (now - self.last_now_call) * (self.get_bpm() / 60)
self.last_now_call = now
return self.beat
def now(self):
""" Returns the total elapsed time (in beats as opposed to seconds) """
if self.ticking is False: # Get the time w/o latency if not ticking
self.beat = self._now()
return float(self.beat)
def mod(self, beat, t=0):
""" Returns the next time at which `Clock.now() % beat` will equal `t` """
n = self.now() // beat
return (n + 1) * beat + t
def osc_message_time(self):
""" Returns the true time that an osc message should be run i.e. now + latency """
return time.time() + self.latency
def start(self):
""" Starts the clock thread """
self.thread.daemon = True
self.thread.start()
return
def _adjust_hard_nudge(self):
""" Checks for any drift between the current beat value and the value
expected based on time elapsed and adjusts the hard_nudge value accordingly """
beats_elapsed = int(self.now()) - self.bpm_start_beat
expected_beat = self.get_elapsed_beats_from_last_bpm_change()
# Dont adjust nudge on first bar of tempo change
if beats_elapsed > 0:
# Account for nudge in the drift
self.drift = self.beat_dur(expected_beat - beats_elapsed) - self.nudge
if abs(self.drift) > 0.001: # value could be reworked / not hard coded
self.hard_nudge -= self.drift
return self._schedule_adjust_hard_nudge()
def _schedule_adjust_hard_nudge(self):
""" Start recursive call to adjust hard-nudge values """
return self.schedule(self._adjust_hard_nudge)
def __run_block(self, block, beat):
""" Private method for calling all the items in the queue block.
This means the clock can still 'tick' while a large number of
events are activated """
# Set the time to "activate" messages on - adjust in case the block is activated late
# `beat` is the actual beat this is happening, `block.beat` is the desired time. Adjust
# the osc_message_time accordingly if this is being called late
block.time = self.osc_message_time() - self.beat_dur(float(beat) - block.beat)
for item in block:
# The item might get called by another item in the queue block
output = None
if item.called is False:
try:
output = item.__call__()
except SystemExit:
sys.exit()
except:
print(error_stack())
# TODO: Get OSC message from the call, and add to list?
# Send all the message to supercollider together
block.send_osc_messages()
# Store the osc messages -- future idea
# self.history.add(block.beat, block.osc_messages)
return
def run(self):
""" Main loop """
self.ticking = True
self.polled = False
while self.ticking:
beat = self._now() # get current time
if self.queue.after_next_event(beat):
self.current_block = self.queue.pop()
# Do the work in a thread
if len(self.current_block):
threading.Thread(target=self.__run_block, args=(self.current_block, beat)).start()
# If using a midi-clock, update the values
# if self.midi_clock is not None:
# self.midi_clock.update()
# if using espgrid
if self.sleep_time > 0:
time.sleep(self.sleep_time)
return
def schedule(self, obj, beat=None, args=(), kwargs={}, is_priority=False):
""" TempoClock.schedule(callable, beat=None)
Add a player / event to the queue """
# Make sure the object can actually be called
try:
assert callable(obj)
except AssertionError:
raise ScheduleError(obj)
# Start the clock ticking if not already
if self.ticking == False:
self.start()
# Default is next bar
if beat is None:
beat = self.next_bar()
# Keep track of objects in the Clock
if obj not in self.playing and isinstance(obj, Player):
self.playing.append(obj)
if obj not in self.items:
self.items.append(obj)
# Add to the queue
self.queue.add(obj, beat, args, kwargs, is_priority)
# block.time = self.osc_message_accum
return
def future(self, dur, obj, args=(), kwargs={}):
""" Add a player / event to the queue `dur` beats in the future """
self.schedule(obj, self.now() + dur, args, kwargs)
return
def next_bar(self):
""" Returns the beat value for the start of the next bar """
beat = self.now()
return beat + (self.meter[0] - (beat % self.meter[0]))
def next_event(self):
""" Returns the beat index for the next event to be called """
return self.queue[-1][1]
def call(self, obj, dur, args=()):
""" Returns a 'schedulable' wrapper for any callable object """
return Wrapper(self, obj, dur, args)
def players(self, ex=[]):
return [p for p in self.playing if p not in ex]
# Every n beats, do...
def every(self, n, cmd, args=()):
def event(f, n, args):
f(*args)
self.schedule(event, self.now() + n, (f, n, args))
return
self.schedule(event, self.now() + n, args=(cmd, n, args))
return
def stop(self):
self.ticking = False
self.kill_tempo_server()
self.kill_tempo_client()
self.clear()
return
def shift(self, n):
""" Offset the clock time """
self.beat += n
return
def clear(self):
""" Remove players from clock """
self.items = []
self.queue.clear()
self.solo.reset()
for player in list(self.playing):
player.kill()
# for item in self.items:
# if hasattr(item, 'stop'):
# item.stop()
self.playing = []
if self.espgrid is not None:
self.schedule(self._espgrid_update_tempo)
return
#####
class Queue(object):
def __init__(self, parent):
self.data = []
self.parent = parent
def __repr__(self):
return "\n".join([str(item) for item in self.data]) if len(self.data) > 0 else "[]"
def add(self, item, beat, args=(), kwargs={}, is_priority=False):
""" Adds a callable object to the queue at a specified beat, args and kwargs for the
callable object must be in a list and dict.
"""
# item must be callable to be schedule, so check args and kwargs are appropriate for it
try:
function = inspect.getfullargspec(item)
except TypeError:
function = inspect.getfullargspec(item.__call__)
# If the item can't take arbitrary keywords, check any kwargs are valid
if function.varkw is None:
for key in list(kwargs.keys()):
if key not in function.args:
del kwargs[key]
# If the new event is before the next scheduled event,
# move it to the 'front' of the queue
if self.before_next_event(beat):
self.data.append(QueueBlock(self, item, beat, args, kwargs, is_priority))
block = self.data[-1]
else:
# If the event is after the next scheduled event, work
# out its position in the queue
# need to be careful in case self.data changes size
for block in self.data:
# If another event is happening at the same time, schedule together
if beat == block.beat:
block.add(item, args, kwargs, is_priority)
break
# If the event is later than the next event, schedule it here
if beat > block.beat:
try:
i = self.data.index(block)
except ValueError:
i = 0
self.data.insert(i, QueueBlock(self, item, beat, args, kwargs, is_priority))
block = self.data[i]
break
# Tell any players about what queue item they are in
if isinstance(item, Player):
item.set_queue_block(block)
return
def clear(self):
while len(self.data):
del self.data[-1]
return
def pop(self):
return self.data.pop() if len(self.data) > 0 else list()
def next(self):
if len(self.data) > 0:
try:
return self.data[-1].beat
except IndexError:
pass
return sys.maxsize
def before_next_event(self, beat):
try:
return beat < self.data[-1].beat
except IndexError:
return True
def after_next_event(self, beat):
try:
return beat >= self.data[-1].beat
except IndexError:
return False
def get_server(self):
""" Returns the `ServerManager` instanced used by this block's parent clock """
return self.parent.server
def get_clock(self):
return self.parent
from types import FunctionType
class QueueBlock(object):
priority_levels = [
lambda x: type(x) in (FunctionType, MethodType), # Any functions are called first
lambda x: isinstance(x, MethodCall), # Then scheduled player methods
lambda x: isinstance(x, Player), # Then players themselves
lambda x: True # And anything else
]
def __init__(self, parent, obj, t, args=(), kwargs={}, is_priority=False): # Why am I forcing an obj?
self.events = [ [] for lvl in self.priority_levels ]
self.called_events = []
self.called_objects = []
self.items = {}
self.osc_messages = []
self.parent = parent
self.server = self.parent.get_server()
self.metro = self.parent.get_clock()
self.beat = t
self.time = 0
self.add(obj, args, kwargs, is_priority)
@classmethod
def set_server(cls, server):
cls.server = server # osc server
def start_server(self, serv):
self.tempo_server = serv(self)
return
def __repr__(self):
return "{}: {}".format(self.beat, self.players())
def add(self, obj, args=(), kwargs={}, is_priority=False):
""" Adds a callable object to the QueueBlock """
q_obj = QueueObj(obj, args, kwargs)
for i, in_level in enumerate(self.priority_levels):
if in_level(obj):
# Put at the front if labelled as priority
if is_priority:
self.events[i].insert(0, q_obj)
else:
self.events[i].append(q_obj)
self.items[q_obj.obj] = q_obj # store the wrapped object as an identifer
break
return
def __call__(self):
""" Calls self.osc_messages() """
self.send_osc_messages()
def append_osc_message(self, message):
""" Adds an OSC bundle if the timetag is not in the past """
if message.timetag > self.metro.get_time():
self.osc_messages.append(message)
return
def send_osc_messages(self):
""" Sends all compiled osc messages to the SuperCollider server """
return list(map(self.server.sendOSC, self.osc_messages))
def players(self):
return [item for level in self.events[1:3] for item in level]
def all_items(self):
return [item for level in self.events for item in level]
def __getitem__(self, key): # could this use hashing with Player objects?
return self.items[key]
def __iter__(self):
return (item for level in self.events for item in level)
def __len__(self):
return sum([len(level) for level in self.events])
def __contains__(self, other):
return other in self.items
def objects(self):
return [item.obj for level in self.events for item in level]
class QueueObj(object):
""" Class representing each item in a `QueueBlock` instance """
def __init__(self, obj, args=(), kwargs={}):
self.obj = obj
self.args = args
self.kwargs = kwargs
self.called = False # flag to True when called by the block
def __eq__(self, other):
return other == self.obj
def __ne__(self, other):
return other != self.obj
def __repr__(self):
return repr(self.obj)
def __call__(self):
value = self.obj.__call__(*self.args, **self.kwargs)
self.called = True
return value
class History(object):
"""
Stores osc messages send from the TempoClock so that if the
Clock is reveresed we can just send the osc messages already sent
"""
def __init__(self):
self.data = []
def add(self, beat, osc_messages):
self.data.append(osc_messages)
from renardo_lib import Code
class Wrapper(Code.LiveObject):
def __init__(self, metro, obj, dur, args=()):
self.args = asStream(args)
self.obj = obj
self.step = dur
self.metro = metro
self.n = 0
self.s = self.obj.__class__.__name__
def __str__(self):
return "<Scheduled Call '%s'>" % self.s
def __repr__(self):
return str(self)
def __call__(self):
""" Call the wrapped object and re-schedule """
args = modi(self.args, self.n)
try:
self.obj.__call__(*args)
except:
self.obj.__call__(args)
Code.LiveObject.__call__(self)
class SoloPlayer:
""" SoloPlayer objects """
def __init__(self):
self.data = []
def __repr__(self):
if len(self.data) == 0:
return "None"
if len(self.data) == 1:
return repr(self.data[0])
else:
return repr(self.data)
def add(self, player):
if player not in self.data:
self.data.append(player)
def set(self, player):
self.data = [player]
def reset(self):
self.data = []
def active(self):
""" Returns true if self.data is not empty """
return len(self.data) > 0
def __eq__(self, other):
""" Returns true if other is in self.data or if self.data is empty """
return (other in self.data) if self.data else True
def __ne__(self, other):
return (other not in self.data) if self.data else True
class ScheduleError(Exception):
def __init__(self, item):
self.type = str(type(item))[1:-1]
def __str__(self):
return "Could not schedule object of {}".format(self.type)
|