1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
# Tutorial 15: Patterns Generators Reference
# There are several other Pattern classes in FoxDot that help you generate arrays of numbers but also behave
# in the same way as the base Pattern. To see what Patterns exist and have a go at using them, execute
print(classes(Patterns.Sequences))
####################
# PEuclid
# PEuclid(n, k)
# Returns the Euclidean rhythm which spreads 'n' pulses over 'k' steps as evenly as possible.
# 3 pulses over 8 steps
print(PEuclid(3, 8))
####################
# PDur
# PDur(n, k, start=0, dur=0.25)
# Returns the actual durations based on Euclidean rhythms (see PEuclid) where dur is the length of each step.
# Spreads 'n' pulses over 'k' steps as evenly as possible
print(PDur(3,8)) # P[0.75, 0.75, 0.5]
print(PDur(5,8))
# Gives a list of 3 dur, appened with a list of 5 dur
print(PDur([3,5],8))
d1 >> play("x", dur=PDur(5,8))
####################
# PIndex
# Returns the index being accessed
print(PIndex())
print(PIndex()*4)
####################
# PSine
# PSine(n=16)
# Returns values of one cycle of sine wave split into 'n' parts
# Split into 5 parts
print(PSine(5))
# Split into 10
print(PSine(10))
####################
# PTri
# PTri(start, stop=None, step=None)
# Returns a Pattern equivalent to `Pattern(range(start, stop, step)) with its reversed form appended.
# Think of it like a "Tri"angle.
# Up to 5 then down to 1
print(PTri(5))
# Up to 8 then down to 1
print(PTri(8))
# From 3 to 10, then down to 4
print(PTri(3,10))
# From 3 to 30, by 2, then down to 4
print(PTri(3,20,2))
# Up to 4, then down to 1, then up to 8, then down to 1
print(PTri([4,8]))
p1 >> pluck(PTri(5), scale=Scale.default.pentatonic)
# Same as
p1 >> pluck(PRange(5) | PRange(5,0,-1), scale=Scale.default.pentatonic)
####################
# PRand
# PRand(start, stop=None)
# Returns a random integer between start and stop.
# Returns a random integer between 0 and start.
print(PRand(8)[:5])
# Returns a random integer between start and stop.
print(PRand(8,16)[:5])
# If start is a container-type it returns a random item for that container.
print(PRand([1,2,3])[:5])
# You can supply a seed
print(PRand([1,2,3], seed=5)[:5])
# Keeps generating random tune
p1 >> pluck(PRand(8))
# Creates a random list, and iterates over that same list
p1 >> pluck(PRand(8)[:3])
####################
# PRhythm
# PRhythm takes a list of single durations and tuples that contain values that can be supplied to the `PDur`
# The following plays the hi hat with a Euclidean Rhythm of 3 pulses in 8 steps
d1 >> play("x-o-", dur=PRhythm([2,(3,8)]))
print(PRhythm([2,(3,8)]))
####################
# PSum
# PSum(n, total)
# Returns a Pattern of length 'n' that sums to equal 'total'
# Returns a pattern of length 2, with elements summed up to 8
print(PSum(3,8))
# Returns a pattern of length 5, with elements summed up to 4
print(PSum(5,4))
####################
# PStep
# PStep(n, value, default=0)
# Returns a Pattern that every n-term is 'value' otherwise 'default'
# Every 4, make it 1, otherwise default to 0
print(PStep(4,1))
# Every 8, make it 6, otherwise, 4
print(PStep(8,6,4))
# Every 5, make it 2, otherwise, 1
print(PStep(5,2,1))
####################
# PWalk
# PWalk(max=7, step=1, start=0)
# By default, returns a pattern with each element randomly 1 higher or lower than the previous
print(PWalk()[:16])
# Changing step
print(PWalk(step=2)[:16])
# With max
print(PWalk(max=2)[:16])
# Start at a non-zero number
print(PWalk(start=6)[:16])
####################
# PWhite
# PWhite(lo=0, hi=1)
# Returns random floating point values between 'lo' and 'hi'
# Lo defaults to 0, hi defaults to 1
print(PWhite()[:8])
# Returns random numbers between 1 and 5
print(PWhite(1,5)[:8])
####################
# Custom Generator Patterns
# Custom generator patterns can be made by subclassing GeneratorPattern
# and overriding `GeneratorPattern.func`
class CustomGeneratorPattern(GeneratorPattern):
def func(self, index):
return int(index / 4)
print(CustomGeneratorPattern()[:10])
# This can be done more consisely using `GeneratorPattern.from_func`,
# passing in a function which takes an index and returns some pattern item.
def some_func(index):
return int(index / 4)
print(GeneratorPattern.from_func(some_func)[:10])
# We can use lambdas too
print(GeneratorPattern.from_func(lambda index: int(index / 4))[:10])
|