1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
|
#! /usr/bin/env python3
#####################################################
# The example shows how to extract a line scan data #
# from a StreamLine HR measurement #
#####################################################
import numpy as np
from renishawWiRE import WDFReader
from _path import curdir, imgdir
try:
import matplotlib.pyplot as plt
plot = True
except ImportError:
plot = False
def main():
filename = curdir / "spectra_files" / "line.wdf"
reader = WDFReader(filename)
assert reader.measurement_type == 3
# For mapping, xdata is still wavenumber
wn = reader.xdata
spectra = reader.spectra
assert wn.shape[0] == spectra.shape[1]
# Now spectra.shape becomes (i, j, spectrum)
print(wn.shape, spectra.shape)
if plot is True:
# Level the spectra with baseline intensity
spectra = spectra - spectra.min(axis=1, keepdims=True)
# Need to revert matrix for plotting
spectra = spectra.T
plt.figure(figsize=(6, 4))
# plot the first 5 spectra
for i in range(5):
plt.plot(wn, spectra[:, i], label="{0:d}".format(i))
plt.legend()
plt.xlabel("Wavenumber (1/cm)")
plt.ylabel("Intensity (ccd counts)")
plt.title("Spectra from line.wdf")
plt.show(block=False)
plt.pause(3)
plt.tight_layout()
plt.savefig(imgdir / "linscan.png", dpi=100)
plt.close()
else:
print("Wavenumber is like:", wn)
print("Spectra matrix is like: \n", spectra)
return
if __name__ == "__main__":
main()
|