1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
|
import numpy as np
import pytest
from resample.bootstrap import confidence_interval, resample
def run_resample(n, method):
x = np.arange(n)
r = []
for b in resample(x, method=method):
r.append(b)
return r
@pytest.mark.benchmark(group="bootstrap-100")
@pytest.mark.parametrize("method", ("ordinary", "balanced", "normal"))
def test_resample_100(benchmark, method):
benchmark(run_resample, 100, method)
@pytest.mark.benchmark(group="bootstrap-1000")
@pytest.mark.parametrize("method", ("ordinary", "balanced", "normal"))
def test_bootstrap_resample_1000(benchmark, method):
benchmark(run_resample, 1000, method)
@pytest.mark.benchmark(group="bootstrap-10000")
@pytest.mark.parametrize("method", ("ordinary", "balanced", "normal"))
def test_bootstrap_resample_10000(benchmark, method):
benchmark(run_resample, 10000, method)
def run_confidence_interval(n, ci_method):
x = np.arange(n)
confidence_interval(np.mean, x, ci_method=ci_method)
@pytest.mark.benchmark(group="confidence-interval-100")
@pytest.mark.parametrize("ci_method", ("percentile", "bca"))
def test_bootstrap_confidence_interval_100(benchmark, ci_method):
benchmark(run_confidence_interval, 100, ci_method)
@pytest.mark.benchmark(group="confidence-interval-1000")
@pytest.mark.parametrize("ci_method", ("percentile", "bca"))
def test_bootstrap_confidence_interval_1000(benchmark, ci_method):
benchmark(run_confidence_interval, 1000, ci_method)
@pytest.mark.benchmark(group="confidence-interval-10000")
@pytest.mark.parametrize("ci_method", ("percentile", "bca"))
def test_bootstrap_confidence_interval_10000(benchmark, ci_method):
benchmark(run_confidence_interval, 10000, ci_method)
|