File: test_jackknife.py

package info (click to toggle)
python-resample 1.10.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,228 kB
  • sloc: python: 1,542; makefile: 12
file content (147 lines) | stat: -rw-r--r-- 3,694 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import numpy as np
import pytest
from numpy.testing import assert_almost_equal, assert_equal
from scipy.optimize import curve_fit
from resample.jackknife import (
    bias,
    bias_corrected,
    jackknife,
    resample,
    variance,
    cross_validation,
)


def test_resample_1d():
    data = (1, 2, 3)

    r = []
    for x in resample(data):
        r.append(x.copy())
    assert_equal(r, [[2, 3], [1, 3], [1, 2]])


def test_resample_2d():
    data = ((1, 2), (3, 4), (5, 6))

    r = []
    for x in resample(data):
        r.append(x.copy())
    assert_equal(r, [[(3, 4), (5, 6)], [(1, 2), (5, 6)], [(1, 2), (3, 4)]])


def test_jackknife():
    data = (1, 2, 3)
    r = jackknife(lambda x: x.copy(), data)
    assert_equal(r, [[2, 3], [1, 3], [1, 2]])


def test_bias_on_unbiased():
    data = (0, 1, 2, 3)
    # bias is exactly zero for linear functions
    r = bias(np.mean, data)
    assert r == 0


def test_bias_on_biased_order_n_minus_one():
    # this "mean" has a bias of exactly O(n^{-1})
    def bad_mean(x):
        return (np.sum(x) + 2) / len(x)

    data = (0, 1, 2)
    r = bias(bad_mean, data)
    mean_jk = np.mean([bad_mean([1, 2]), bad_mean([0, 2]), bad_mean([0, 1])])
    # (5/2 + 4/2 + 3/2) / 3 = 12 / 6 = 2
    assert mean_jk == 2.0
    # f = 5/3
    # (n-1) * (mean_jk - f)
    # (3 - 1) * (6/3 - 5/3) = 2/3
    # note: 2/3 is exactly the bias of bad_mean for n = 3
    assert r == pytest.approx(2.0 / 3.0)


def test_bias_on_array_map():
    # compute mean and (biased) variance simultanously
    def fn(x):
        return np.mean(x), np.var(x, ddof=0)

    data = (0, 1, 2)
    r = bias(fn, data)
    assert_almost_equal(r, (0.0, -1.0 / 3.0))


def test_bias_corrected():
    # this "mean" has a bias of exactly O(n^{-1})
    def bad_mean(x):
        return (np.sum(x) + 2) / len(x)

    # bias correction is exact up to O(n^{-1})
    data = (0, 1, 2)
    r = bias_corrected(bad_mean, data)
    assert r == 1.0  # which is the correct unbiased mean


def test_variance():
    data = (0, 1, 2)
    r = variance(np.mean, data)
    # formula is (n - 1) / n * sum((jf - mean(jf)) ** 2)
    # fj = [3/2, 1, 1/2]
    # mfj = 1
    # ((3/2 - 1)^2 + (1 - 1)^2 + (1/2 - 1)^2) * 2 / 3
    # (1/4 + 1/4) / 3 * 2 = 1/3
    assert r == pytest.approx(1.0 / 3.0)


def test_resample_several_args():
    a = [1, 2, 3]
    b = [(1, 2), (2, 3), (3, 4)]
    c = ["12", "3", "4"]
    for ai, bi, ci in resample(a, b, c):
        assert np.shape(ai) == (2,)
        assert np.shape(bi) == (2, 2)
        assert np.shape(ci) == (2,)
        assert set(ai) <= set(a)
        assert set(ci) <= set(c)
        bi = list(tuple(x) for x in bi)
        assert set(bi) <= set(b)


def test_resample_several_args_incompatible_keywords():
    a = [1, 2, 3]
    with pytest.raises(ValueError):
        resample(a, [1, 2])

    with pytest.raises(ValueError):
        resample(a, [1, 2, 3, 4])


def test_resample_deprecation():
    data = [1, 2, 3]

    with pytest.warns(FutureWarning):
        r = list(resample(data, False))

    assert_equal(r, list(resample(data, copy=False)))

    with pytest.warns(FutureWarning):
        with pytest.raises(ValueError):  # too many arguments
            resample(data, True, 1)


@pytest.mark.filterwarnings("ignore:Covariance")
def test_cross_validation():
    x = [1, 2, 3]
    y = [3, 4, 5]

    def predict(xi, yi, xo, npar):
        def model(x, *par):
            return np.polyval(par, x)

        popt = curve_fit(model, xi, yi, p0=np.zeros(npar))[0]
        return model(xo, *popt)

    v = cross_validation(predict, x, y, 2)
    assert v == pytest.approx(0)

    v2 = cross_validation(predict, x, y, 1)
    assert v2 == pytest.approx(1.5)