1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
.. _hkt:
Higher Kinded Types
===================
Higher Kinded Types is a new concept for Python developers.
But, it is totally not new in general!
So, let's start with the detailed explanation: what Higher Kinded Types are?
Regular types
-------------
We can start with the very basic example.
Let's say we have a function that transforms type ``A`` into a type ``B``.
These types ``A`` and ``B`` can be some specific ones, for example:
.. code:: python
>>> def from_a_to_b(arg: int) -> str:
... return str(arg)
>>> assert from_a_to_b(1) == '1'
That's what we already know and use. Let's scale things up!
Generics
--------
The next thing we can do with types is to write generic types.
What are generic types?
Basically, they are some types that contain other types inside.
Like ``List[int]`` is a list of integers: ``[1, 2, 3]``.
We know that ``List[int]`` has a shape of a ``list`` and contents of ``int``.
We can also write functions that work with generics:
.. code:: python
>>> from typing import List
>>> def all_to_str(arg: List[int]) -> List[str]:
... return [str(item) for item in arg]
>>> assert all_to_str([1, 2]) == ['1', '2']
There's one more thing about generics we want to notice at this point.
Different generics do have different numbers of type arguments:
- ``List`` has a single type argument:
``List[Value]`` or ``Maybe[Value]``
- ``Dict`` has two type arguments:
``Dict[Key, Value]`` or ``Result[Value, Error]``
- ``Generator`` has three type arguments: ``Generator[Yield, Send, Return]``
or ``RequiresContextResult[Value, Error, Env]``
That's what we call a kind.
So, ``List`` and ``Maybe`` have a kind of ``1``,
``Dict`` and ``Result`` have kind of ``2``,
``Generator`` and ``RequiresContextResult`` have a kind of ``3``.
So, let's go one level further.
Operations on generics
----------------------
Let's say you have a function that copies all values of a passed argument.
We can define this function as:
.. code:: python
>>> from typing import TypeVar
>>> ValueType = TypeVar('ValueType')
>>> def copy(arg: ValueType) -> ValueType:
... ...
This function can work with any type.
It receives something and then returns the same value back.
That's the whole point of copying!
But, there are different functions, that do different things with types.
For example, we can write a function that converts
a value inside any :class:`Container1 <returns.interfaces.container.ContainerN>`
(a base class for all our containers)
from ``int`` to ``str``:
We can also write functions that work with generics:
.. code:: python
>>> from returns.interfaces.container import Container1
>>> def to_str(container: Container1[int]) -> Container1[str]:
... return container.map(str)
And here's how it can be used:
.. code:: python
>>> from returns.maybe import Maybe
>>> from returns.io import IO
>>> assert to_str(Maybe.from_value(1)) == Maybe.from_value('1')
>>> assert to_str(IO.from_value(1)) == IO.from_value('1')
It works just fine! But! It has a very important thing inside.
All calls to ``to_str`` will return ``Container1`` type,
not something specific:
.. code:: python
reveal_type(to_str(Maybe.from_value(1))) # Container1[str]
reveal_type(to_str(IO.from_value(1))) # Container1[str]
But, we know that this is not true.
When we pass a ``Maybe`` in - we get the ``Maybe`` back.
When we pass a ``IO`` in - we get the ``IO`` back.
How can we fix this problem? With ``@overload``!
.. code:: python
>>> from typing import overload
>>> from returns.maybe import Maybe
>>> from returns.io import IO
>>> @overload
... def to_str(arg: Maybe[int]) -> Maybe[str]:
... ...
>>> @overload
... def to_str(arg: IO[int]) -> IO[str]:
... ...
We kinda fixed it!
Now, our calls will reveal the correct types for these three examples:
.. code:: python
reveal_type(to_str(Maybe.from_value(1))) # Maybe[str]
reveal_type(to_str(IO.from_value(1))) # IO[str]
But, there's an important limitation with this solution:
no other types are allowed in this function anymore.
So, you will try to use it with any other type, it won't be possible.
Current limitations
-------------------
To overcome current ``@overload`` decorators limitations,
we can imagine a syntax like this:
.. code:: python
from typing import TypeVar
from returns.interfaces.container import Container1
T = TypeVar('T', bound=Container1)
def all_to_str(arg: T[int]) -> T[str]:
...
Sadly, this does not work. Because ``TypeVar`` cannot be used with ``[]``.
We have to find some other way.
Higher Kinded Types
-------------------
So, that's where ``returns`` saves the day!
.. note::
Technical note: this feature requires :ref:`mypy plugin <mypy-plugins>`.
The main idea is that we can rewrite ``T[int]`` as ``Kind1[T, int]``.
Let's see how it works:
.. code:: python
>>> from returns.primitives.hkt import Kind1
>>> from returns.interfaces.container import ContainerN
>>> from typing import TypeVar
>>> T = TypeVar('T', bound=ContainerN)
>>> def to_str(container: Kind1[T, int]) -> Kind1[T, str]:
... return container.map(str)
Now, this will work almost correctly!
Why almost? Because the revealed type will be ``Kind1``.
.. code:: python
reveal_type(to_str(Maybe.from_value(1))) # Kind1[Maybe, str]
reveal_type(to_str(IO.from_value(1))) # Kind1[IO, str]
That's not something we want. We don't need ``Kind1``,
we need real ``Maybe`` or ``IO`` values.
The final solution is to decorate ``to_str`` with ``@kinded``:
.. code:: python
>>> from returns.primitives.hkt import kinded
>>> @kinded
... def to_str(container: Kind1[T, int]) -> Kind1[T, str]:
... return container.map(str)
Now, it will be fully working:
.. code:: python
reveal_type(to_str(Maybe.from_value(1))) # Maybe[str]
reveal_type(to_str(IO.from_value(1))) # IO[str]
And the thing about this approach is that it will be:
1. Fully type-safe. It works with correct interface ``ContainerN``,
returns the correct type, has correct type transformation
2. Is opened for further extension and even custom types
Kinds
-----
As it was said ``Maybe[int]``, ``Result[str, int]``,
and ``RequiresContextResult[str, int, bool]`` are different
in terms of a number of type arguments.
We support different kinds:
- ``Kind1[Maybe, int]`` is similar to ``Maybe[int]``
- ``Kind2[Result, str, int]`` is similar to ``Result[str, int]``
- ``Kind3[RequiresContextResult, str, int, bool]``
is similar to ``RequiresContextResult[str, int, bool]``
You can use any of them freely.
Later you will learn how to
:ref:`create your own types <create-your-own-container>` that support kinds!
Further reading
---------------
- `Higher Kinded Types in Python <https://sobolevn.me/2020/10/higher-kinded-types-in-python>`_
FAQ
---
Which types you can use with KindN?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The first position in all ``KindN`` types
can be occupied by either ``Instance`` type or ``TypeVar`` with ``bound=``.
Let's see an example:
.. code:: python
>>> from typing import TypeVar
>>> from returns.primitives.hkt import KindN, kinded
>>> from returns.interfaces.mappable import MappableN
>>> _FirstType = TypeVar('_FirstType')
>>> _SecondType = TypeVar('_SecondType')
>>> _ThirdType = TypeVar('_ThirdType')
>>> _MappableKind = TypeVar('_MappableKind', bound=MappableN)
>>> @kinded
... def works_with_interface(
... container: KindN[_MappableKind, _FirstType, _SecondType, _ThirdType],
... ) -> KindN[_MappableKind, str, _SecondType, _ThirdType]:
... return container.map(str)
This version of ``works_with_interface`` will work
with any subtype of ``MappableN``.
Because we use ``_MappableKind`` in its definition.
And ``_MappableKind`` is a ``TypeVar`` bound to ``MappableN``.
Arguments of non ``MappableN`` subtypes will be rejected by a type-checker:
.. code:: python
>>> from returns.maybe import Maybe
>>> from returns.io import IO
>>> from returns.result import Success
>>> assert works_with_interface(Maybe.from_value(1)) == Maybe.from_value('1')
>>> assert works_with_interface(IO.from_value(1)) == IO.from_value('1')
>>> assert works_with_interface(Success(1)) == Success('1')
In contrast, we can work directly with some specific type,
let's say ``Maybe`` container:
.. code:: python
>>> from returns.maybe import Maybe
>>> @kinded
... def works_with_maybe(
... container: KindN[Maybe, _FirstType, _SecondType, _ThirdType],
... ) -> KindN[Maybe, str, _SecondType, _ThirdType]:
... return container.map(str)
>>> assert works_with_maybe(Maybe.from_value(1)) == Maybe.from_value('1')
Function ``works_with_maybe`` will work correctly with ``Maybe`` instance.
Other types will be rejected.
So, choose wisely which mechanism you need.
API Reference
-------------
.. autoclasstree:: returns.primitives.hkt
:strict:
.. automodule:: returns.primitives.hkt
:members:
|