1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
.. _result:
Result
======
Make sure to get familiar with :ref:`Railway oriented programming <railway>`.
``Result`` is obviously a result of some series of computations.
It might succeed with some resulting value.
Or it might return an error with some extra details.
``Result`` consist of two types: ``Success`` and ``Failure``.
``Success`` represents successful operation result
and ``Failure`` indicates that something has failed.
.. code:: python
from returns.result import Result, Success, Failure
def find_user(user_id: int) -> Result['User', str]:
user = User.objects.filter(id=user_id)
if user.exists():
return Success(user[0])
return Failure('User was not found')
user_search_result = find_user(1)
# => Success(User{id: 1, ...})
user_search_result = find_user(0) # id 0 does not exist!
# => Failure('User was not found')
When is it useful?
When you do not want to use exceptions to break your execution scope.
Or when you do not want to use ``None`` to represent empty values,
since it will raise ``TypeError`` somewhere
and other ``None`` exception-friends.
Composition
-----------
Make sure to check out how to compose container with
``flow`` or :ref:`pipe`!
Read more about them if you want to compose your containers easily.
Pattern Matching
----------------
``Result`` values can be matched using the new feature of Python 3.10,
`Structural Pattern Matching <https://www.python.org/dev/peps/pep-0622/>`_,
see the example below:
.. literalinclude:: ../../tests/test_examples/test_result/test_result_pattern_matching.py
Aliases
-------
There are several useful aliases for ``Result`` type with some common values:
- :attr:`returns.result.ResultE` is an alias for ``Result[... Exception]``,
just use it when you want to work with ``Result`` containers
that use exceptions as error type.
It is named ``ResultE`` because it is ``ResultException``
and ``ResultError`` at the same time.
Decorators
----------
Limitations
~~~~~~~~~~~
Typing will only work correctly
if :ref:`our mypy plugin <mypy-plugins>` is used.
This happens due to `mypy issue <https://github.com/python/mypy/issues/3157>`_.
safe
~~~~
:func:`safe <returns.result.safe>` is used to convert
regular functions that can throw exceptions to functions
that return :class:`Result <returns.result.Result>` type.
Supports only regular functions.
If you need to mark ``async`` functions as ``safe``,
use :func:`future_safe <returns.future.future_safe>` instead.
.. code:: python
>>> from returns.result import Success, safe
>>> @safe # Will convert type to: Callable[[int], Result[float, Exception]]
... def divide(number: int) -> float:
... return number / number
>>> assert divide(1) == Success(1.0)
>>> str(divide(0))
'<Failure: division by zero>'
If you want ``@safe`` to handle only a set of exceptions:
.. code:: python
>>> @safe(exceptions=(ZeroDivisionError,)) # Other exceptions will be raised
... def divide(number: int) -> float:
... if number > 10:
... raise ValueError('Too big')
... return number / number
>>> assert divide(5) == Success(1.0)
>>> assert divide(0).failure()
>>> divide(15)
Traceback (most recent call last):
...
ValueError: Too big
attempt
~~~~~~~
Similar to :func:`safe <returns.result.safe>` function but instead
of wrapping the exception error in a :class:`Failure <returns.result.Failure>` container it'll wrap the
argument that lead to that exception.
.. code:: python
>>> from returns.result import Failure, Success, attempt
>>> @attempt
... def divide_itself(number: int) -> float:
... return number / number
>>> assert divide_itself(2) == Success(1.0)
>>> assert divide_itself(0) == Failure(0)
.. warning::
This decorator works only with functions that has just one argument.
FAQ
---
.. _result-units:
How to create unit objects?
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Use ``Success`` or ``Failure``.
Alternatively :meth:`returns.result.Result.from_value`
or :meth:`returns.result.Result.from_failure`.
It might be a good idea to use unit functions
together with the explicit annotation.
Python's type system does not allow us to do much, so this is required:
.. code:: python
>>> from returns.result import Result, Success
>>> def callback(arg: int) -> Result[float, int]:
... return Success(float(arg))
>>> first: Result[int, int] = Success(1)
>>> assert first.bind(callback) == Success(1.0)
Otherwise ``first`` will have ``Result[int, Any]`` type.
Which is okay in some situations.
How to compose error types?
~~~~~~~~~~~~~~~~~~~~~~~~~~~
You might want to sometimes use ``unify`` :ref:`pointfree` functions
instead of ``.bind`` to compose error types together.
While ``.bind`` enforces error type to stay the same,
``unify`` is designed
to return a ``Union`` of a previous error type and a new one.
It gives an extra flexibility, but also provokes more thinking
and can be problematic in some cases.
Like so:
.. code:: python
>>> from returns.result import Result, Success, Failure
>>> from returns.pointfree import unify
>>> def div(number: int) -> Result[float, ZeroDivisionError]:
... if number:
... return Success(1 / number)
... return Failure(ZeroDivisionError('division by zero'))
>>> container: Result[int, ValueError] = Success(1)
>>> assert unify(div)(container) == Success(1.0)
>>> # => Revealed type is:
>>> # Result[float, Union[ValueError, ZeroDivisionError]]
So, that's a way to go, if you need this composition.
map vs bind
~~~~~~~~~~~
We use the ``map`` method when we're working with pure functions, a function
is pure if it doesn't produce any side-effect (e.g. Exceptions). On the other
hand, we use the ``bind`` method if a function returns a ``Result`` instance
which translates its potential side-effect into a raw value.
See the example below:
.. code:: python
>>> import json
>>> from typing import Dict
>>> from returns.result import Failure, Result, Success, safe
>>> # `cast_to_bool` doesn't produce any side-effect
>>> def cast_to_bool(arg: int) -> bool:
... return bool(arg)
>>> # `parse_json` can produce Exceptions, so we use the `safe` decorator
>>> # to prevent any kind of exceptions
>>> @safe
... def parse_json(arg: str) -> Dict[str, str]:
... return json.loads(arg)
>>> assert Success(1).map(cast_to_bool) == Success(True)
>>> assert Success('{"example": "example"}').bind(parse_json) == Success({"example": "example"})
>>> assert Success('').bind(parse_json).alt(str) == Failure('Expecting value: line 1 column 1 (char 0)')
How to check if your result is a success or failure?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
``Result`` is a container and you can use :meth:`returns.pipeline.is_successful`
like so:
.. code:: python
>>> from returns.result import Success, Failure
>>> from returns.pipeline import is_successful
>>> assert is_successful(Success(1)) is True
>>> assert is_successful(Failure('text')) is False
Further reading
---------------
- `Railway Oriented Programming <https://fsharpforfunandprofit.com/rop/>`_
- `Recoverable Errors with Result in Rust <https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html>`_
- `Either overview in TypeScript <https://gcanti.github.io/fp-ts/modules/Either.ts.html>`_
API Reference
-------------
.. autoclasstree:: returns.result
:strict:
.. automodule:: returns.result
:members:
|