File: container.rst

package info (click to toggle)
python-returns 0.26.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,652 kB
  • sloc: python: 11,000; makefile: 18
file content (419 lines) | stat: -rw-r--r-- 11,559 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
Container: the concept
======================

.. currentmodule:: returns.primitives.container

Container is a concept that allows you
to write code around the existing wrapped values
while maintaining the execution context.

List of supported containers:

- :class:`Maybe <returns.maybe.Maybe>` to handle ``None`` cases
- :class:`Result <returns.result.Result>` to handle possible exceptions
- :class:`IO <returns.io.IO>` to mark explicit ``IO`` actions
- :class:`Future <returns.future.Future>` to work with ``async`` code
- :class:`RequiresContext <returns.context.requires_context.RequiresContext>`
  to pass context to your functions (DI and similar)

There are also some combinations like
:class:`IOResult <returns.io.IOResult>`,
:class:`FutureResult <returns.future.FutureResult>`,
:class:`RequiresContextResult <.RequiresContextResult>`,
:class:`RequiresContextIOResult <.RequiresContextIOResult>` and
:class:`RequiresContextFutureResult <.RequiresContextFutureResult>`.

We will show you container's simple API of one attribute
and several simple methods.


Basics
------

The main idea behind a container is that it wraps some internal state.
That's what
:attr:`._inner_value <returns.primitives.container.Container._inner_value>`
is used for.

And we have several functions
to create new containers based on the previous state.
And we can see how this state is evolving during the execution.

.. mermaid::
  :caption: State evolution.

  graph LR
    F1["Container(Initial)"] --> F2["Container(UserId(1))"]
    F2                       --> F3["Container(UserAccount(156))"]
    F3                       --> F4["Container(FailedLoginAttempt(1))"]
    F4                       --> F5["Container(SentNotificationId(992))"]


Working with a container
------------------------

We use two methods to create a new container from the previous one.
``bind`` and ``map``.

The difference is simple:

- ``map`` works with functions that return regular value
- ``bind`` works with functions that return new container of the same type

We have :func:`returns.interfaces.mappable.MappableN.map`
to compose containers with regular functions.

Here's how it looks:

.. mermaid::
  :caption: Illustration of ``map`` method.

  graph LR
    F1["Container[A]"] -- "map(function)" --> F2["Container[B]"]

    style F1 fill:green
    style F2 fill:green

.. code:: python

  >>> from typing import Any
  >>> from returns.result import Success, Result

  >>> def double(state: int) -> int:
  ...     return state * 2

  >>> result: Result[int, Any] = Success(1).map(double)
  >>> assert str(result) == '<Success: 2>'

  >>> result: Result[int, Any] = result.map(lambda state: state + 1)
  >>> assert str(result) == '<Success: 3>'

The same works with built-in functions as well:

.. code:: python

  >>> from returns.io import IO

  >>> io = IO('bytes').map(list)
  >>> str(io)
  "<IO: ['b', 'y', 't', 'e', 's']>"

The second method is ``bind``. It is a bit different.
We pass a function that returns another container to it.
:func:`returns.interfaces.bindable.BindableN.bind`
is used to literally bind two different containers together.

Here's how it looks:

.. mermaid::
  :caption: Illustration of ``bind`` method.

  graph LR
    F1["Container[A]"] -- "bind(function)" --> F2["Container[B]"]
    F1["Container[A]"] -- "bind(function)" --> F3["Container[C]"]

    style F1 fill:green
    style F2 fill:green
    style F3 fill:red

.. code:: python

  from returns.result import Result, Success

  def may_fail(user_id: int) -> Result[float, str]:
      ...

  value: Result[int, str] = Success(1)
  # Can be assumed as either Success[float] or Failure[str]:
  result: Result[float, str] = value.bind(may_fail)

.. note::

  All containers support these methods.
  Because all containers implement
  :class:`returns.interfaces.mappable.MappableN`
  and
  :class:`returns.interfaces.bindable.BindableN`.

You can read more about methods
that some other containers support
and :ref:`interfaces <base-interfaces>` behind them.


Instantiating a container
-------------------------

All :class:`returns.interfaces.applicative.ApplicativeN` containers
support special ``.from_value`` method
to construct a new container from a raw value.

.. code:: python

  >>> from returns.result import Result
  >>> assert str(Result.from_value(1)) == '<Success: 1>'

There are also other methods in other interfaces.
For example, here are some of them:

- :func:`returns.interfaces.specific.maybe.MaybeLikeN.from_optional`
  creates a value from ``Optional`` value

.. code:: python

  >>> from returns.maybe import Maybe, Some, Nothing
  >>> assert Maybe.from_optional(1) == Some(1)
  >>> assert Maybe.from_optional(None) == Nothing

- :func:`returns.interfaces.failable.DiverseFailableN.from_failure`
  creates a failing container from a value

.. code:: python

  >>> from returns.result import Result, Failure
  >>> assert Result.from_failure(1) == Failure(1)

There are many other constructors!
Check out concrete types and their interfaces.


Working with multiple containers
--------------------------------

Multiple container arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We have already seen how we can work with one container and functions
that receive a single argument.

Let's say you have a function of two arguments and two containers:

.. code:: python

  >>> def sum_two_numbers(first: int, second: int) -> int:
  ...     return first + second

And here are our two containers:

.. code:: python

  >>> from returns.io import IO

  >>> one = IO(1)
  >>> two = IO(2)

The naive approach to compose two ``IO`` containers and a function
would be too hard to show here.
Luckily, we support partial application and the ``.apply()`` method.

Here are the required steps:

0. We make ``sum_two_numbers`` to receive :ref:`partial arguments <curry>`
1. We create a new container that wraps ``sum_two_numbers`` function as a value
2. We then call ``.apply()`` twice to pass each value

It can be done like so:

.. code:: python

  >>> from returns.curry import curry
  >>> from returns.io import IO

  >>> @curry
  ... def sum_two_numbers(first: int, second: int) -> int:
  ...     return first + second

  >>> one = IO(1)
  >>> two = IO(2)
  >>> assert two.apply(one.apply(IO(sum_two_numbers))) == IO(3)

But, there are other ways to make ``sum_two_numbers`` partial.
One can use ``partial`` as well:

.. code:: python

  >>> from returns.curry import partial

  >>> one = IO(1)
  >>> two = IO(2)
  >>> assert two.apply(one.apply(
  ...     IO(lambda x: partial(sum_two_numbers, x)),
  ... )) == IO(3)

Or even native ``lambda`` functions:

.. code:: python

  >>> one = IO(1)
  >>> two = IO(2)
  >>> assert two.apply(one.apply(
  ...     IO(lambda x: lambda y: sum_two_numbers(x, y)),
  ... )) == IO(3)

It would be faster, but not as elegant (and type-safe).

Working with iterable of containers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Imagine that you have to take 10 random numbers
and then sum them to get the final result.

So, here's how your code will look like:

.. code:: python

  >>> import random
  >>> from returns.io import IO

  >>> def random_number() -> IO[int]:
  ...     return IO(2)  # Example, basically alias of ``random.randint(1, 5)``

  >>> numbers = [random_number() for _ in range(10)]
  >>> assert len(numbers) == 10
  >>> assert all(isinstance(number, IO) for number in numbers)

So, how to sum these random values into a single ``IO[int]`` value?
That's where
:meth:`Fold.loop <returns.iterables.AbstractFold.loop>` really helps!

.. code:: python

  >>> from typing import Callable
  >>> from returns.iterables import Fold

  >>> def sum_two_numbers(first: int) -> Callable[[int], int]:
  ...     return lambda second: first + second

  >>> assert Fold.loop(
  ...     numbers,  # let's loop on our ``IO`` values
  ...     IO(0),  # starting from ``0`` value
  ...     sum_two_numbers,  # and getting the sum of each two numbers in a loop
  ... ) == IO(20)

We can also change the initial element to some other value:

.. code:: python

  >>> assert Fold.loop(
  ...     numbers,
  ...     IO(5),  # now we will start from ``5``, not ``0`
  ...     sum_two_numbers,
  ... ) == IO(25)

``Fold.loop`` is eager. It will be executed for all items in your iterable.

Collecting an iterable of containers into a single container
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You might end up with an iterable of containers:

.. code:: python

  >>> from typing import List
  >>> from returns.maybe import Maybe, Some, Nothing, maybe

  >>> source = {'a': 1, 'b': 2}
  >>> fetched_values: List[Maybe[int]] = [
  ...     maybe(source.get)(key)
  ...     for key in ('a', 'b')
  ... ]

To work with iterable of containers,
it is recommended to cast it into a container with the iterable inside
using the :meth:`Fold.collect <returns.iterables.AbstractFold.collect>` method:

.. code:: python

  >>> from returns.iterables import Fold

  >>> assert Fold.collect(fetched_values, Some(())) == Some((1, 2))

Any falsy values will result in a falsy result (pun intended):

.. code:: python

  >>> fetched_values: List[Maybe[int]] = [
  ...     maybe(source.get)(key)
  ...     for key in ('a', 'c')  # 'c' is missing!
  ... ]
  >>> assert Fold.collect(fetched_values, Some(())) == Nothing

You can also use a different strategy to fetch values you need,
to do just that we have
:meth:`Fold.collect_all <returns.iterables.AbstractFold.collect_all>` method:

.. code:: python

  >>> fetched_values: Maybe[int] = [
  ...     maybe(source.get)(key)
  ...     for key in ('a', 'c')  # 'c' is missing!
  ... ]
  >>> assert Fold.collect_all(fetched_values, Some(())) == Some((1,))

We support any ``Iterable[T]`` input type
and return a ``Container[Sequence[T]]``.

You can subclass ``Fold`` type to change how any of these methods work.

.. _immutability:

Immutability
------------

We like to think of ``returns``
as :ref:`immutable <primitive-types>` structures.
You cannot mutate the inner state of the created container,
because we redefine ``__setattr__`` and ``__delattr__`` magic methods.

You cannot also set new attributes to container instances,
since we are using ``__slots__`` for better performance and strictness.

Well, nothing is **really** immutable in python, but you were warned.

We also provide :class:`returns.primitives.types.Immutable` mixin
that users can use to quickly make their classes immutable.


.. _type-safety:

Type safety
-----------

We try to make our containers optionally type safe.

What does it mean?

1. It is still good old ``python``, do whatever you want without ``mypy``
2. If you are using ``mypy`` you will be notified about type violations

We also ship `PEP561 <https://www.python.org/dev/peps/pep-0561/>`_
compatible ``.pyi`` files together with the source code.
In this case these types will be available to users
when they install our application.

We also ship custom ``mypy`` plugins to overcome some existing problems,
please make sure to use them,
since they increase your developer experience and type-safety level:

Check out our docs on using our :ref:`mypy plugins <mypy-plugins>`.


Further reading
---------------

- :ref:`Railway oriented programming <railway>`


.. _base-interfaces:

API Reference
-------------

``BaseContainer`` is a base class for all other containers.
It defines some basic things like representation, hashing, pickling, etc.

.. autoclasstree:: returns.primitives.container
   :strict:

.. automodule:: returns.primitives.container
   :members:
   :special-members: