1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
from collections.abc import Iterator
from itertools import starmap
from typing import Final, final
from mypy.nodes import ARG_STAR, ARG_STAR2
from mypy.plugin import FunctionContext
from mypy.types import (
CallableType,
FunctionLike,
Instance,
Overloaded,
ProperType,
TypeType,
get_proper_type,
)
from returns.contrib.mypy._structures.args import FuncArg
from returns.contrib.mypy._typeops.analtype import (
analyze_call,
safe_translate_to_function,
)
from returns.contrib.mypy._typeops.inference import CallableInference
from returns.contrib.mypy._typeops.transform_callable import (
Functions,
Intermediate,
detach_callable,
proper_type,
)
_SUPPORTED_TYPES: Final = (
CallableType,
Instance,
TypeType,
Overloaded,
)
def analyze(ctx: FunctionContext) -> ProperType:
"""
This hook is used to make typed curring a thing in `returns` project.
This plugin is a temporary solution to the problem.
It should be later replaced with the official way of doing things.
One day functions will have better API and we plan
to submit this plugin into ``mypy`` core plugins,
so it would not be required.
Internally we just reduce the original function's argument count.
And drop some of them from function's signature.
"""
default_return = get_proper_type(ctx.default_return_type)
if not isinstance(default_return, CallableType):
return default_return
function_def = get_proper_type(ctx.arg_types[0][0])
func_args = _AppliedArgs(ctx)
if len(list(filter(len, ctx.arg_types))) == 1:
return function_def # this means, that `partial(func)` is called
if not isinstance(function_def, _SUPPORTED_TYPES):
return default_return
if isinstance(function_def, Instance | TypeType):
# We force `Instance` and similar types to coercse to callable:
function_def = func_args.get_callable_from_context()
is_valid, applied_args = func_args.build_from_context()
if not isinstance(function_def, CallableType | Overloaded) or not is_valid:
return default_return
return _PartialFunctionReducer(
default_return,
function_def,
applied_args,
ctx,
).new_partial()
@final
class _PartialFunctionReducer:
"""
Helper object to work with curring.
Here's a quick overview of things that is going on inside:
1. Firstly we create intermediate callable that represents a subset
of argument that are passed with the ``curry`` call
2. Then, we run typechecking on this intermediate function
and passed arguments to make sure that everything is correct
3. Then, we subtract intermediate arguments from the passed function
4. Finally we run type substitution on newly created final function
to replace generic vars we already know to make sure
that everything still works and the number of type vars is reduced
This plugin requires several things:
- One should now how ``ExpressionChecker`` from ``mypy`` works
- What ``FunctionLike`` is
- How kinds work in type checking
- What ``map_actuals_to_formals`` is
- How constraints work
That's not an easy plugin to work with.
"""
def __init__(
self,
default_return_type: FunctionLike,
original: FunctionLike,
applied_args: list[FuncArg],
ctx: FunctionContext,
) -> None:
"""
Saving the things we need.
Args:
default_return_type: default callable type got by ``mypy``.
original: passed function to be curried.
applied_args: arguments that are already provided in the definition.
ctx: plugin hook context provided by ``mypy``.
"""
self._default_return_type = default_return_type
self._original = original
self._applied_args = applied_args
self._ctx = ctx
self._case_functions: list[CallableType] = []
self._fallbacks: list[CallableType] = []
def new_partial(self) -> ProperType:
"""
Creates new partial functions.
Splits passed functions into ``case_function``
where each overloaded spec is processed inducidually.
Then we combine everything back together removing unfit parts.
"""
for case_function in self._original.items:
fallback, intermediate = self._create_intermediate(case_function)
self._fallbacks.append(fallback)
if intermediate:
partial = self._create_partial_case(
case_function,
intermediate,
fallback,
)
self._case_functions.append(partial)
return self._create_new_partial()
def _create_intermediate(
self,
case_function: CallableType,
) -> tuple[CallableType, CallableType | None]:
intermediate = Intermediate(case_function).with_applied_args(
self._applied_args,
)
return intermediate, analyze_call(
intermediate,
self._applied_args,
self._ctx,
show_errors=False,
)
def _create_partial_case(
self,
case_function: CallableType,
intermediate: CallableType,
fallback: CallableType,
) -> CallableType:
partial = CallableInference(
Functions(case_function, intermediate).diff(),
self._ctx,
fallback=fallback,
).from_usage(self._applied_args)
if case_function.is_generic():
# We can deal with really different `case_function` over here.
# The first one is regular `generic` function
# that has variables and typevars in its spec.
# In this case, we process `partial` the same way.
# It should be generic also.
#
# The second possible type of `case_function` is pseudo-generic.
# These are functions that contain typevars in its spec,
# but variables are empty.
# Probably these functions are already used in a generic context.
# So, we ignore them and do not add variables back.
#
# Regular functions are also untouched by this.
return detach_callable(partial)
return partial.copy_modified(variables=[])
def _create_new_partial(self) -> ProperType:
"""
Creates a new partial function-like from set of callables.
We also need fallbacks here, because sometimes
there are no possible ways to create at least a single partial case.
In this scenario we analyze the set of fallbacks
and tell user what went wrong.
"""
if not self._case_functions:
analyze_call(
proper_type(self._fallbacks),
self._applied_args,
self._ctx,
show_errors=True,
)
return self._default_return_type
return proper_type(self._case_functions)
@final
class _AppliedArgs:
"""Builds applied args that were partially applied."""
def __init__(self, function_ctx: FunctionContext) -> None:
"""
We need the function default context.
The first arguments of ``partial`` is skipped:
it is the applied function itself.
"""
self._function_ctx = function_ctx
self._parts = zip(
self._function_ctx.arg_names[1:],
self._function_ctx.arg_types[1:],
self._function_ctx.arg_kinds[1:],
strict=False,
)
def get_callable_from_context(self) -> ProperType:
"""Returns callable type from the context."""
return get_proper_type(
safe_translate_to_function(
self._function_ctx.arg_types[0][0],
self._function_ctx,
)
)
def build_from_context(self) -> tuple[bool, list[FuncArg]]:
"""
Builds handy arguments structures from the context.
Some usages might be invalid,
because we cannot really infer some arguments.
.. code:: python
partial(some, *args)
partial(other, **kwargs)
Here ``*args`` and ``**kwargs`` can be literally anything!
In these cases we fallback to the default return type.
"""
applied_args = []
for names, types, kinds in self._parts:
for arg in self._generate_applied_args(
zip(names, types, kinds, strict=False)
):
if arg.kind in {ARG_STAR, ARG_STAR2}:
# We cannot really work with `*args`, `**kwargs`.
return False, []
applied_args.append(arg)
return True, applied_args
def _generate_applied_args(self, arg_parts) -> Iterator[FuncArg]:
yield from starmap(FuncArg, arg_parts)
|