1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
|
from abc import abstractmethod
from collections.abc import Sequence
from typing import ClassVar, TypeVar, final
from returns.primitives.laws import (
Law,
Law1,
Law2,
Law3,
Lawful,
LawSpecDef,
law_definition,
)
_EqualType = TypeVar('_EqualType', bound='Equable')
@final
class _LawSpec(LawSpecDef):
"""
Equality laws.
Description: https://bit.ly/34D40iT
"""
__slots__ = ()
@law_definition
def reflexive_law(
first: _EqualType,
) -> None:
"""Value should be equal to itself."""
assert first.equals(first)
@law_definition
def symmetry_law(
first: _EqualType,
second: _EqualType,
) -> None:
"""If ``A == B`` then ``B == A``."""
assert first.equals(second) == second.equals(first)
@law_definition
def transitivity_law(
first: _EqualType,
second: _EqualType,
third: _EqualType,
) -> None:
"""If ``A == B`` and ``B == C`` then ``A == C``."""
# We use this notation, because `first` might be equal to `third`,
# but not to `second`. Example: Some(1), Some(2), Some(1)
if first.equals(second) and second.equals(third):
assert first.equals(third)
class Equable(Lawful['Equable']):
"""
Interface for types that can be compared with real values.
Not all types can, because some don't have the value at a time:
- ``Future`` has to be awaited to get the value
- ``Reader`` has to be called to get the value
"""
__slots__ = ()
_laws: ClassVar[Sequence[Law]] = (
Law1(_LawSpec.reflexive_law),
Law2(_LawSpec.symmetry_law),
Law3(_LawSpec.transitivity_law),
)
@abstractmethod
def equals(self: _EqualType, other: _EqualType) -> bool:
"""Type-safe equality check for values of the same type."""
|