File: iterables.py

package info (click to toggle)
python-returns 0.26.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,652 kB
  • sloc: python: 11,000; makefile: 18
file content (428 lines) | stat: -rw-r--r-- 12,735 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
from abc import abstractmethod
from collections.abc import Callable, Iterable
from typing import TypeVar, final

from returns.interfaces.applicative import ApplicativeN
from returns.interfaces.failable import FailableN
from returns.primitives.hkt import KindN, kinded

_FirstType = TypeVar('_FirstType')
_SecondType = TypeVar('_SecondType')
_ThirdType = TypeVar('_ThirdType')
_UpdatedType = TypeVar('_UpdatedType')

_ApplicativeKind = TypeVar('_ApplicativeKind', bound=ApplicativeN)
_FailableKind = TypeVar('_FailableKind', bound=FailableN)


class AbstractFold:
    """
    A collection of different helpers to write declarative ``Iterable`` actions.

    Allows to work with iterables.

    .. rubric:: Implementation

    ``AbstractFold`` and ``Fold`` types are special.
    They have double definition for each method: public and protected ones.
    Why?

    Because you cannot override ``@kinded`` method due to a ``mypy`` bug.
    So, there are two opportunities for us here:

    1. Declare all method as ``@final`` and do not allow to change anything
    2. Use delegation to protected unkinded methods

    We have chosen the second way! Here's how it works:

    1. Public methods are ``@kinded`` for better typing and cannot be overridden
    2. Protected methods are unkinded and can be overridden in subtyping

    Now, if you need to make a change into our implementation,
    then you can subclass ``Fold`` or ``AbstractFold`` and then
    change an implementation of any unkinded protected method.
    """

    __slots__ = ()

    @final
    @kinded
    @classmethod
    def loop(
        cls,
        iterable: Iterable[
            KindN[_ApplicativeKind, _FirstType, _SecondType, _ThirdType],
        ],
        acc: KindN[_ApplicativeKind, _UpdatedType, _SecondType, _ThirdType],
        function: Callable[
            [_FirstType],
            Callable[[_UpdatedType], _UpdatedType],
        ],
    ) -> KindN[_ApplicativeKind, _UpdatedType, _SecondType, _ThirdType]:
        """
        Allows to make declarative loops for any ``ApplicativeN`` subtypes.

        Quick example:

        .. code:: python

          >>> from typing import Callable
          >>> from returns.maybe import Some
          >>> from returns.iterables import Fold

          >>> def sum_two(first: int) -> Callable[[int], int]:
          ...     return lambda second: first + second

          >>> assert Fold.loop(
          ...     [Some(1), Some(2), Some(3)],
          ...     Some(10),
          ...     sum_two,
          ... ) == Some(16)

        Looks like ``foldl`` in some other languages with some more specifics.
        See: https://philipschwarz.dev/fpilluminated/?page_id=348#bwg3/137

        .. image:: https://i.imgur.com/Tza1isS.jpg

        Is also quite similar to ``reduce``.

        Public interface for ``_loop`` method. Cannot be modified directly.
        """
        return cls._loop(iterable, acc, function, _concat_applicative)

    @final
    @kinded
    @classmethod
    def collect(
        cls,
        iterable: Iterable[
            KindN[_ApplicativeKind, _FirstType, _SecondType, _ThirdType],
        ],
        acc: KindN[
            _ApplicativeKind,
            'tuple[_FirstType, ...]',
            _SecondType,
            _ThirdType,
        ],
    ) -> KindN[
        _ApplicativeKind,
        'tuple[_FirstType, ...]',
        _SecondType,
        _ThirdType,
    ]:
        """
        Transforms an iterable of containers into a single container.

        Quick example for regular containers:

        .. code:: python

          >>> from returns.io import IO
          >>> from returns.iterables import Fold

          >>> items = [IO(1), IO(2)]
          >>> assert Fold.collect(items, IO(())) == IO((1, 2))

        If container can have failed values,
        then this strategy fails on any existing failed like type.

        It is enough to have even a single failed value in iterable
        for this type to convert the whole operation result to be a failure.
        Let's see how it works:

        .. code:: python

          >>> from returns.result import Success, Failure
          >>> from returns.iterables import Fold

          >>> empty = []
          >>> all_success = [Success(1), Success(2), Success(3)]
          >>> has_failure = [Success(1), Failure('a'), Success(3)]
          >>> all_failures = [Failure('a'), Failure('b')]

          >>> acc = Success(())  # empty tuple

          >>> assert Fold.collect(empty, acc) == Success(())
          >>> assert Fold.collect(all_success, acc) == Success((1, 2, 3))
          >>> assert Fold.collect(has_failure, acc) == Failure('a')
          >>> assert Fold.collect(all_failures, acc) == Failure('a')

        If that's now what you need, check out
        :meth:`~AbstractFold.collect_all`
        to force collect all non-failed values.

        Public interface for ``_collect`` method. Cannot be modified directly.
        """
        return cls._collect(iterable, acc)

    @final
    @kinded
    @classmethod
    def collect_all(
        cls,
        iterable: Iterable[
            KindN[_FailableKind, _FirstType, _SecondType, _ThirdType],
        ],
        acc: KindN[
            _FailableKind,
            'tuple[_FirstType, ...]',
            _SecondType,
            _ThirdType,
        ],
    ) -> KindN[
        _FailableKind,
        'tuple[_FirstType, ...]',
        _SecondType,
        _ThirdType,
    ]:
        """
        Transforms an iterable of containers into a single container.

        This method only works with ``FailableN`` subtypes,
        not just any ``ApplicativeN`` like :meth:`~AbstractFold.collect`.

        Strategy to extract all successful values
        even if there are failed values.

        If there's at least one successful value
        and any amount of failed values,
        we will still return all collected successful values.

        We can return failed value for this strategy only in a single case:
        when default element is a failed value.

        Let's see how it works:

        .. code:: python

          >>> from returns.result import Success, Failure
          >>> from returns.iterables import Fold

          >>> empty = []
          >>> all_success = [Success(1), Success(2), Success(3)]
          >>> has_failure = [Success(1), Failure('a'), Success(3)]
          >>> all_failures = [Failure('a'), Failure('b')]

          >>> acc = Success(())  # empty tuple

          >>> assert Fold.collect_all(empty, acc) == Success(())
          >>> assert Fold.collect_all(all_success, acc) == Success((1, 2, 3))
          >>> assert Fold.collect_all(has_failure, acc) == Success((1, 3))
          >>> assert Fold.collect_all(all_failures, acc) == Success(())
          >>> assert Fold.collect_all(empty, Failure('c')) == Failure('c')

        If that's now what you need, check out :meth:`~AbstractFold.collect`
        to collect only successful values and fail on any failed ones.

        Public interface for ``_collect_all`` method.
        Cannot be modified directly.
        """
        return cls._collect_all(iterable, acc)

    # Protected part
    # ==============

    @classmethod
    @abstractmethod
    def _loop(
        cls,
        iterable: Iterable[
            KindN[_ApplicativeKind, _FirstType, _SecondType, _ThirdType],
        ],
        acc: KindN[_ApplicativeKind, _UpdatedType, _SecondType, _ThirdType],
        function: Callable[
            [_FirstType],
            Callable[[_UpdatedType], _UpdatedType],
        ],
        concat: Callable[
            [
                KindN[_ApplicativeKind, _FirstType, _SecondType, _ThirdType],
                KindN[_ApplicativeKind, _UpdatedType, _SecondType, _ThirdType],
                KindN[
                    _ApplicativeKind,
                    Callable[
                        [_FirstType],
                        Callable[[_UpdatedType], _UpdatedType],
                    ],
                    _SecondType,
                    _ThirdType,
                ],
            ],
            KindN[_ApplicativeKind, _UpdatedType, _SecondType, _ThirdType],
        ],
    ) -> KindN[_ApplicativeKind, _UpdatedType, _SecondType, _ThirdType]:
        """
        Protected part of ``loop`` method.

        Can be replaced in subclasses for better performance, etc.
        """

    @classmethod
    def _collect(
        cls,
        iterable: Iterable[
            KindN[_ApplicativeKind, _FirstType, _SecondType, _ThirdType],
        ],
        acc: KindN[
            _ApplicativeKind,
            'tuple[_FirstType, ...]',
            _SecondType,
            _ThirdType,
        ],
    ) -> KindN[
        _ApplicativeKind,
        'tuple[_FirstType, ...]',
        _SecondType,
        _ThirdType,
    ]:
        return cls._loop(
            iterable,
            acc,
            _concat_sequence,
            _concat_applicative,
        )

    @classmethod
    def _collect_all(
        cls,
        iterable: Iterable[
            KindN[_FailableKind, _FirstType, _SecondType, _ThirdType],
        ],
        acc: KindN[
            _FailableKind,
            'tuple[_FirstType, ...]',
            _SecondType,
            _ThirdType,
        ],
    ) -> KindN[
        _FailableKind,
        'tuple[_FirstType, ...]',
        _SecondType,
        _ThirdType,
    ]:
        return cls._loop(
            iterable,
            acc,
            _concat_sequence,
            _concat_failable_safely,
        )


class Fold(AbstractFold):
    """
    Concrete implementation of ``AbstractFold`` of end users.

    Use it by default.
    """

    __slots__ = ()

    @classmethod
    def _loop(
        cls,
        iterable: Iterable[
            KindN[_ApplicativeKind, _FirstType, _SecondType, _ThirdType],
        ],
        acc: KindN[_ApplicativeKind, _UpdatedType, _SecondType, _ThirdType],
        function: Callable[
            [_FirstType],
            Callable[[_UpdatedType], _UpdatedType],
        ],
        concat: Callable[
            [
                KindN[_ApplicativeKind, _FirstType, _SecondType, _ThirdType],
                KindN[_ApplicativeKind, _UpdatedType, _SecondType, _ThirdType],
                KindN[
                    _ApplicativeKind,
                    Callable[
                        [_FirstType],
                        Callable[[_UpdatedType], _UpdatedType],
                    ],
                    _SecondType,
                    _ThirdType,
                ],
            ],
            KindN[_ApplicativeKind, _UpdatedType, _SecondType, _ThirdType],
        ],
    ) -> KindN[_ApplicativeKind, _UpdatedType, _SecondType, _ThirdType]:
        """
        Protected part of ``loop`` method.

        Can be replaced in subclasses for better performance, etc.
        """
        wrapped = acc.from_value(function)
        for current in iterable:
            acc = concat(current, acc, wrapped)
        return acc


# Helper functions
# ================


def _concat_sequence(
    first: _FirstType,
) -> Callable[
    ['tuple[_FirstType, ...]'],
    'tuple[_FirstType, ...]',
]:
    """
    Concats a given item to an existing sequence.

    We use explicit curring with ``lambda`` function because,
    ``@curry`` decorator is way slower. And we don't need its features here.
    But, your functions can use ``@curry`` if you need it.
    """
    return lambda second: (*second, first)


def _concat_applicative(
    current: KindN[
        _ApplicativeKind,
        _FirstType,
        _SecondType,
        _ThirdType,
    ],
    acc: KindN[
        _ApplicativeKind,
        _UpdatedType,
        _SecondType,
        _ThirdType,
    ],
    function: KindN[
        _ApplicativeKind,
        Callable[[_FirstType], Callable[[_UpdatedType], _UpdatedType]],
        _SecondType,
        _ThirdType,
    ],
) -> KindN[_ApplicativeKind, _UpdatedType, _SecondType, _ThirdType]:
    """Concats two applicatives using a curried-like function."""
    return acc.apply(current.apply(function))


def _concat_failable_safely(
    current: KindN[
        _FailableKind,
        _FirstType,
        _SecondType,
        _ThirdType,
    ],
    acc: KindN[
        _FailableKind,
        _UpdatedType,
        _SecondType,
        _ThirdType,
    ],
    function: KindN[
        _FailableKind,
        Callable[[_FirstType], Callable[[_UpdatedType], _UpdatedType]],
        _SecondType,
        _ThirdType,
    ],
) -> KindN[_FailableKind, _UpdatedType, _SecondType, _ThirdType]:
    """
    Concats two ``FailableN`` using a curried-like function and a fallback.

    We need both ``.apply`` and ``.lash`` methods here.
    """
    return _concat_applicative(current, acc, function).lash(lambda _: acc)