1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
|
"""
Credits:
This file was adopted from: https://github.com/pydata/xarray # noqa
Source file: https://github.com/pydata/xarray/blob/1d7bcbdc75b6d556c04e2c7d7a042e4379e15303/xarray/backends/rasterio_.py # noqa
"""
# pylint: disable=too-many-lines
import contextlib
import importlib.metadata
import os
import re
import threading
import warnings
from collections import defaultdict
from collections.abc import Hashable, Iterable
from typing import Any, Optional, Union
import numpy
import rasterio
from numpy.typing import NDArray
from packaging import version
from rasterio.errors import NotGeoreferencedWarning
from rasterio.vrt import WarpedVRT
from xarray import Dataset, IndexVariable
from xarray.backends.common import BackendArray
from xarray.backends.file_manager import CachingFileManager, FileManager
from xarray.backends.locks import SerializableLock
from xarray.coding import times, variables
from xarray.core import indexing
from xarray.core.dataarray import DataArray
from xarray.core.dtypes import maybe_promote
from xarray.core.utils import is_scalar
from xarray.core.variable import as_variable
from rioxarray.exceptions import RioXarrayError
from rioxarray.rioxarray import _generate_spatial_coords
FILL_VALUE_NAMES = ("_FillValue", "missing_value", "fill_value", "nodata")
UNWANTED_RIO_ATTRS = ("nodatavals", "is_tiled", "res")
# TODO: should this be GDAL_LOCK instead?
RASTERIO_LOCK = SerializableLock()
NO_LOCK = contextlib.nullcontext()
def _ensure_warped_vrt(riods, vrt_params):
"""
Ensuire the dataset is represented as a warped vrt
"""
if vrt_params is None:
return riods
if isinstance(riods, SingleBandDatasetReader):
riods._create_vrt(vrt_params)
else:
riods = WarpedVRT(riods, **vrt_params)
return riods
class SingleBandDatasetReader:
"""
Hack to have a DatasetReader behave like it only has one band
"""
def __init__(self, riods, bidx, vrt_params=None) -> None:
self._riods = riods
self._bidx = bidx
self._vrt_params = vrt_params
self._create_vrt(vrt_params=vrt_params)
def __getattr__(self, __name: str) -> Any:
return getattr(self._riods, __name)
def _create_vrt(self, vrt_params):
if vrt_params is not None and not isinstance(self._riods, WarpedVRT):
self._riods = WarpedVRT(self._riods, **vrt_params)
self._vrt_params = vrt_params
@property
def name(self):
"""
str: name of the dataset. Usually the path.
"""
if isinstance(self._riods, rasterio.vrt.WarpedVRT):
return self._riods.src_dataset.name
return self._riods.name
@property
def count(self):
"""
int: band count
"""
return 1
@property
def nodata(self):
"""
Nodata value for the band
"""
return self._riods.nodatavals[self._bidx]
@property
def offsets(self):
"""
Offset value for the band
"""
return [self._riods.offsets[self._bidx]]
@property
def scales(self):
"""
Scale value for the band
"""
return [self._riods.scales[self._bidx]]
@property
def units(self):
"""
Unit for the band
"""
return [self._riods.units[self._bidx]]
@property
def descriptions(self):
"""
Description for the band
"""
return [self._riods.descriptions[self._bidx]]
@property
def dtypes(self):
"""
dtype for the band
"""
return [self._riods.dtypes[self._bidx]]
@property
def indexes(self):
"""
indexes for the band
"""
return [self._riods.indexes[self._bidx]]
def read(self, indexes=None, **kwargs): # pylint: disable=unused-argument
"""
read data for the band
"""
if numpy.isscalar(indexes):
indexes = self._bidx + 1
else:
indexes = [self._bidx + 1]
return self._riods.read(indexes=indexes, **kwargs)
def tags(self, bidx=None, **kwargs): # pylint: disable=unused-argument
"""
read tags for the band
"""
return self._riods.tags(bidx=self._bidx + 1, **kwargs)
RasterioReader = Union[
rasterio.io.DatasetReader, rasterio.vrt.WarpedVRT, SingleBandDatasetReader
]
try:
_DASK_GTE_018 = version.parse(importlib.metadata.version("dask")) >= version.parse(
"0.18.0"
)
except importlib.metadata.PackageNotFoundError:
_DASK_GTE_018 = False
def _get_unsigned_dtype(unsigned, dtype):
"""
Based on: https://github.com/pydata/xarray/blob/abe1e613a96b000ae603c53d135828df532b952e/xarray/coding/variables.py#L306-L334
"""
dtype = numpy.dtype(dtype)
if unsigned is True and dtype.kind == "i":
return numpy.dtype(f"u{dtype.itemsize}")
if unsigned is False and dtype.kind == "u":
return numpy.dtype(f"i{dtype.itemsize}")
return None
class FileHandleLocal(threading.local):
"""
This contains the thread local ThreadURIManager
"""
def __init__(self): # pylint: disable=super-init-not-called
self.thread_manager = None # Initialises in each thread
class ThreadURIManager:
"""
This handles opening & closing file handles in each thread.
"""
def __init__(
self,
opener,
*args,
mode="r",
kwargs=None,
):
self._opener = opener
self._args = args
self._mode = mode
self._kwargs = {} if kwargs is None else dict(kwargs)
self._file_handle = None
@property
def file_handle(self):
"""
File handle returned by the opener.
"""
if self._file_handle is not None:
return self._file_handle
self._file_handle = self._opener(*self._args, mode=self._mode, **self._kwargs)
return self._file_handle
def close(self):
"""
Close file handle.
"""
if self._file_handle is not None:
self._file_handle.close()
self._file_handle = None
def __del__(self):
self.close()
def __enter__(self):
return self
def __exit__(self, type_, value, traceback):
self.close()
class URIManager(FileManager):
"""
The URI manager is used for lockless reading
"""
def __init__(
self,
opener,
*args,
mode="r",
kwargs=None,
):
self._opener = opener
self._args = args
self._mode = mode
self._kwargs = {} if kwargs is None else dict(kwargs)
self._local = FileHandleLocal()
def acquire(self, needs_lock=True):
if self._local.thread_manager is None:
self._local.thread_manager = ThreadURIManager(
self._opener, *self._args, mode=self._mode, kwargs=self._kwargs
)
return self._local.thread_manager.file_handle
@contextlib.contextmanager
def acquire_context(self, needs_lock=True):
try:
yield self.acquire(needs_lock=needs_lock)
except Exception:
self.close(needs_lock=needs_lock)
raise
def close(self, needs_lock=True):
if self._local.thread_manager is not None:
self._local.thread_manager.close()
self._local.thread_manager = None
def __del__(self):
self.close(needs_lock=False)
def __getstate__(self):
"""State for pickling."""
return (self._opener, self._args, self._mode, self._kwargs)
def __setstate__(self, state):
"""Restore from a pickle."""
opener, args, mode, kwargs = state
self.__init__(opener, *args, mode=mode, kwargs=kwargs)
class RasterioArrayWrapper(BackendArray):
"""A wrapper around rasterio dataset objects"""
# pylint: disable=too-many-instance-attributes
def __init__(
self,
*,
manager,
lock,
name,
vrt_params=None,
masked=False,
mask_and_scale=False,
unsigned=False,
):
self.manager = manager
self.lock = lock
self.masked = masked or mask_and_scale
self.mask_and_scale = mask_and_scale
# cannot save riods as an attribute: this would break pickleability
riods = _ensure_warped_vrt(manager.acquire(), vrt_params)
self.vrt_params = vrt_params
self._shape = (riods.count, riods.height, riods.width)
self._dtype = None
self._unsigned_dtype = None
self._fill_value = riods.nodata
dtypes = riods.dtypes
if not numpy.all(numpy.asarray(dtypes) == dtypes[0]):
raise ValueError("All bands should have the same dtype")
dtype = _rasterio_to_numpy_dtype(dtypes)
if mask_and_scale and unsigned is not None:
self._unsigned_dtype = _get_unsigned_dtype(
unsigned=unsigned,
dtype=dtype,
)
if self._unsigned_dtype is not None and self._fill_value is not None:
self._fill_value = self._unsigned_dtype.type(self._fill_value)
if self._unsigned_dtype is None:
warnings.warn(
f"variable {name!r} has _Unsigned attribute but is not "
"of integer type. Ignoring attribute.",
variables.SerializationWarning,
stacklevel=3,
)
if self.masked:
self._dtype, self._fill_value = maybe_promote(dtype)
else:
self._dtype = dtype
@property
def dtype(self):
"""
Data type of the array
"""
return self._dtype
@property
def fill_value(self):
"""
Fill value of the array
"""
return self._fill_value
@property
def shape(self):
"""
Shape of the array
"""
return self._shape
def _get_indexer(self, key):
"""Get indexer for rasterio array.
Parameter
---------
key: tuple of int
Returns
-------
band_key: an indexer for the 1st dimension
window: two tuples. Each consists of (start, stop).
squeeze_axis: axes to be squeezed
np_ind: indexer for loaded numpy array
See also
--------
indexing.decompose_indexer
"""
if len(key) != 3:
raise RioXarrayError("rasterio datasets should always be 3D")
# bands cannot be windowed but they can be listed
band_key = key[0]
np_inds = []
# bands (axis=0) cannot be windowed but they can be listed
if isinstance(band_key, slice):
start, stop, step = band_key.indices(self.shape[0])
band_key = numpy.arange(start, stop, step)
# be sure we give out a list
band_key = (numpy.asarray(band_key) + 1).tolist()
if isinstance(band_key, list): # if band_key is not a scalar
np_inds.append(slice(None))
# but other dims can only be windowed
window = []
squeeze_axis = []
for iii, (ikey, size) in enumerate(zip(key[1:], self.shape[1:])):
if isinstance(ikey, slice):
# step is always positive. see indexing.decompose_indexer
start, stop, step = ikey.indices(size)
np_inds.append(slice(None, None, step))
elif is_scalar(ikey):
# windowed operations will always return an array
# we will have to squeeze it later
squeeze_axis.append(-(2 - iii))
start = ikey
stop = ikey + 1
else:
start, stop = numpy.min(ikey), numpy.max(ikey) + 1
np_inds.append(ikey - start)
window.append((start, stop))
if isinstance(key[1], numpy.ndarray) and isinstance(key[2], numpy.ndarray):
# do outer-style indexing
np_inds[-2:] = numpy.ix_(*np_inds[-2:])
return band_key, tuple(window), tuple(squeeze_axis), tuple(np_inds)
def _getitem(self, key):
band_key, window, squeeze_axis, np_inds = self._get_indexer(key)
if not band_key or any(start == stop for (start, stop) in window):
# no need to do IO
shape = (len(band_key),) + tuple(stop - start for (start, stop) in window)
out = numpy.zeros(shape, dtype=self.dtype)
else:
with self.lock:
riods = _ensure_warped_vrt(
self.manager.acquire(needs_lock=False), self.vrt_params
)
out = riods.read(band_key, window=window, masked=self.masked)
if self._unsigned_dtype is not None:
out = out.astype(self._unsigned_dtype)
if self.masked:
out = numpy.ma.filled(out.astype(self.dtype), self.fill_value)
if self.mask_and_scale:
if not isinstance(band_key, Iterable):
out = (
out * riods.scales[band_key - 1]
+ riods.offsets[band_key - 1]
)
else:
for iii, band_iii in enumerate(numpy.atleast_1d(band_key) - 1):
out[iii] = (
out[iii] * riods.scales[band_iii]
+ riods.offsets[band_iii]
)
if squeeze_axis:
out = numpy.squeeze(out, axis=squeeze_axis)
return out[np_inds]
def __getitem__(self, key):
return indexing.explicit_indexing_adapter(
key, self.shape, indexing.IndexingSupport.OUTER, self._getitem
)
def _parse_envi(meta):
"""Parse ENVI metadata into Python data structures.
See the link for information on the ENVI header file format:
http://www.harrisgeospatial.com/docs/enviheaderfiles.html
Parameters
----------
meta : dict
Dictionary of keys and str values to parse, as returned by the rasterio
tags(ns='ENVI') call.
Returns
-------
parsed_meta : dict
Dictionary containing the original keys and the parsed values
"""
def parsevec(value):
return numpy.fromstring(value.strip("{}"), dtype="float", sep=",")
def default(value):
return value.strip("{}")
parse = {"wavelength": parsevec, "fwhm": parsevec}
parsed_meta = {key: parse.get(key, default)(value) for key, value in meta.items()}
return parsed_meta
def _rasterio_to_numpy_dtype(dtypes):
"""Numpy dtype from first entry of rasterio dataset.dtypes"""
# rasterio has some special dtype names (complex_int16 -> numpy.complex64)
if dtypes[0] == "complex_int16":
dtype = numpy.dtype("complex64")
else:
dtype = numpy.dtype(dtypes[0])
return dtype
def _to_numeric(value: Any) -> float:
"""
Convert the value to a number
"""
try:
value = int(value)
except (TypeError, ValueError):
try:
value = float(value)
except (TypeError, ValueError):
pass
return value
def _parse_tag(*, key: str, value: Any) -> tuple[str, Any]:
# NC_GLOBAL is appended to tags with netcdf driver and is not really needed
key = key.split("NC_GLOBAL#")[-1]
if value.startswith("{") and value.endswith("}"):
try:
new_val = numpy.fromstring(value.strip("{}"), dtype="float", sep=",")
# pylint: disable=len-as-condition
value = new_val if len(new_val) else _to_numeric(value)
except ValueError:
value = _to_numeric(value)
else:
value = _to_numeric(value)
return key, value
def _parse_tags(tags: dict) -> dict:
parsed_tags = {}
for key, value in tags.items():
key, value = _parse_tag(key=key, value=value)
parsed_tags[key] = value
return parsed_tags
NETCDF_DTYPE_MAP = {
0: object, # NC_NAT
1: numpy.byte, # NC_BYTE
2: numpy.char, # NC_CHAR
3: numpy.short, # NC_SHORT
4: numpy.int_, # NC_INT, NC_LONG
5: float, # NC_FLOAT
6: numpy.double, # NC_DOUBLE
7: numpy.ubyte, # NC_UBYTE
8: numpy.ushort, # NC_USHORT
9: numpy.uint, # NC_UINT
10: numpy.int64, # NC_INT64
11: numpy.uint64, # NC_UINT64
12: object, # NC_STRING
}
def _load_netcdf_attrs(*, tags: dict, data_array: DataArray) -> None:
"""
Loads the netCDF attributes into the data array
Attributes stored in this format:
- variable_name#attr_name: attr_value
"""
for key, value in tags.items():
key, value = _parse_tag(key=key, value=value)
key_split = key.split("#")
if len(key_split) != 2:
continue
variable_name, attr_name = key_split
if variable_name in data_array.coords:
data_array.coords[variable_name].attrs.update({attr_name: value})
def _parse_netcdf_attr_array(attr: Union[NDArray, str], *, dtype=None) -> NDArray:
"""
Expected format: '{2,6}' or '[2. 6.]'
"""
value: Union[NDArray, str, list]
if isinstance(attr, str):
if attr.startswith("{"):
value = attr.strip("{}").split(",")
else:
value = attr.strip("[]").split()
elif not isinstance(attr, Iterable):
value = [attr]
else:
value = attr
return numpy.array(value, dtype=dtype)
def _load_netcdf_1d_coords(tags: dict) -> dict:
"""
Dimension information:
- NETCDF_DIM_EXTRA: '{time}' (comma separated list of dim names)
- NETCDF_DIM_time_DEF: '{2,6}' or '[2. 6.]' (dim size, dim dtype)
- NETCDF_DIM_time_VALUES: '{0,872712.659688}' (comma separated list of data) or [ 0. 872712.659688]
"""
dim_names = tags.get("NETCDF_DIM_EXTRA")
if not dim_names:
return {}
dim_names = _parse_netcdf_attr_array(dim_names)
coords = {}
for dim_name in dim_names:
dim_def = tags.get(f"NETCDF_DIM_{dim_name}_DEF")
if dim_def is None:
continue
# pylint: disable=unused-variable
dim_size, dim_dtype = _parse_netcdf_attr_array(dim_def)
dim_dtype = NETCDF_DTYPE_MAP.get(int(float(dim_dtype)), object)
dim_values = _parse_netcdf_attr_array(tags[f"NETCDF_DIM_{dim_name}_VALUES"])
coords[dim_name] = IndexVariable(dim_name, dim_values)
return coords
def build_subdataset_filter(
group_names: Optional[Union[str, list[str], tuple[str, ...]]],
variable_names: Optional[Union[str, list[str], tuple[str, ...]]],
):
"""
Example::
'HDF4_EOS:EOS_GRID:"./modis/MOD09GQ.A2017290.h11v04.006.NRT.hdf":
MODIS_Grid_2D:sur_refl_b01_1'
Parameters
----------
group_names: str or list or tuple
Name or names of netCDF groups to filter by.
variable_names: str or list or tuple
Name or names of netCDF variables to filter by.
Returns
-------
re.SRE_Pattern: output of re.compile()
"""
variable_query = r"\w+"
if variable_names is not None:
if not isinstance(variable_names, (tuple, list)):
variable_names = [variable_names]
variable_names = [re.escape(variable_name) for variable_name in variable_names]
variable_query = rf"(?:{'|'.join(variable_names)})"
if group_names is not None:
if not isinstance(group_names, (tuple, list)):
group_names = [group_names]
group_names = [re.escape(group_name) for group_name in group_names]
group_query = rf"(?:{'|'.join(group_names)})"
else:
return re.compile(r"".join([r".*(?:\:/|\:)(/+)?", variable_query, r"$"]))
return re.compile(
r"".join(
[r".*(?:\:/|\:)(/+)?", group_query, r"[:/](/+)?", variable_query, r"$"]
)
)
def _get_rasterio_attrs(riods: RasterioReader):
"""
Get rasterio specific attributes
"""
# pylint: disable=too-many-branches
# Add rasterio attributes
attrs = _parse_tags({**riods.tags(), **riods.tags(1)})
# remove attributes with informaiton
# that should be added by GDAL/rasterio
for unwanted_attr in FILL_VALUE_NAMES + UNWANTED_RIO_ATTRS:
attrs.pop(unwanted_attr, None)
if riods.nodata is not None:
# The nodata values for the raster bands
attrs["_FillValue"] = riods.nodata
# The scale values for the raster bands
if len(set(riods.scales)) > 1:
attrs["scales"] = riods.scales
warnings.warn(
"Scales differ across bands. The 'scale_factor' attribute will "
"not be added. See the 'scales' attribute."
)
else:
attrs["scale_factor"] = riods.scales[0]
# The offset values for the raster bands
if len(set(riods.offsets)) > 1:
attrs["offsets"] = riods.offsets
warnings.warn(
"Offsets differ across bands. The 'add_offset' attribute will "
"not be added. See the 'offsets' attribute."
)
else:
attrs["add_offset"] = riods.offsets[0]
if any(riods.descriptions):
if len(set(riods.descriptions)) == 1:
attrs["long_name"] = riods.descriptions[0]
else:
# Descriptions for each dataset band
attrs["long_name"] = riods.descriptions
if any(riods.units):
# A list of units string for each dataset band
if len(riods.units) == 1:
attrs["units"] = riods.units[0]
else:
attrs["units"] = riods.units
return attrs
def _decode_datetime_cf(
data_array: DataArray,
decode_times: bool,
decode_timedelta: Optional[bool],
) -> DataArray:
"""
Decide the datetime based on CF conventions
"""
if decode_timedelta is None:
decode_timedelta = decode_times
for coord in data_array.coords:
time_var = None
if decode_times and "since" in data_array[coord].attrs.get("units", ""):
time_var = times.CFDatetimeCoder(use_cftime=True).decode(
as_variable(data_array[coord]), name=coord
)
elif (
decode_timedelta
and data_array[coord].attrs.get("units") in times.TIME_UNITS
):
time_var = times.CFTimedeltaCoder().decode(
as_variable(data_array[coord]), name=coord
)
if time_var is not None:
dimensions, data, attributes, encoding = variables.unpack_for_decoding(
time_var
)
data_array = data_array.assign_coords(
{
coord: IndexVariable(
dims=dimensions,
data=data,
attrs=attributes,
encoding=encoding,
)
}
)
return data_array
def _parse_driver_tags(
riods: RasterioReader,
attrs: dict,
coords: dict,
) -> None:
# Parse extra metadata from tags, if supported
parsers = {"ENVI": _parse_envi}
driver = riods.driver
if driver in parsers:
meta = parsers[driver](riods.tags(ns=driver))
for key, value in meta.items():
# Add values as coordinates if they match the band count,
# as attributes otherwise
if isinstance(value, (list, numpy.ndarray)) and len(value) == riods.count:
coords[key] = ("band", numpy.asarray(value))
else:
attrs[key] = value
def _pop_global_netcdf_attrs_from_vars(dataset_to_clean: Dataset) -> Dataset:
# remove GLOBAL netCDF attributes from dataset variables
for coord in dataset_to_clean.coords:
for variable in dataset_to_clean.variables:
dataset_to_clean[variable].attrs = {
attr: value
for attr, value in dataset_to_clean[variable].attrs.items()
if attr not in dataset_to_clean.attrs
and not attr.startswith(f"{coord}#")
}
return dataset_to_clean
def _subdataset_groups_to_dataset(
*, dim_groups: dict[Hashable, dict[Hashable, DataArray]], global_tags: dict
) -> Union[Dataset, list[Dataset]]:
if dim_groups:
dataset: Union[Dataset, list[Dataset]] = []
for dim_group in dim_groups.values():
dataset_group = _pop_global_netcdf_attrs_from_vars(
Dataset(dim_group, attrs=global_tags)
)
def _ds_close():
# pylint: disable=cell-var-from-loop
for data_var in dim_group.values():
data_var.close()
dataset_group.set_close(_ds_close)
dataset.append(dataset_group)
if len(dataset) == 1:
dataset = dataset.pop()
else:
dataset = Dataset(attrs=global_tags)
return dataset
def _load_subdatasets(
riods: RasterioReader,
*,
group: Optional[Union[str, list[str], tuple[str, ...]]],
variable: Optional[Union[str, list[str], tuple[str, ...]]],
parse_coordinates: bool,
chunks: Optional[Union[int, tuple, dict]],
cache: Optional[bool],
lock: Any,
masked: bool,
mask_and_scale: bool,
decode_times: bool,
decode_timedelta: Optional[bool],
**open_kwargs,
) -> Union[Dataset, list[Dataset]]:
"""
Load in rasterio subdatasets
"""
dim_groups: dict[Hashable, dict[Hashable, DataArray]] = defaultdict(dict)
subdataset_filter = None
if any((group, variable)):
subdataset_filter = build_subdataset_filter(group, variable)
for subdataset in riods.subdatasets:
if subdataset_filter is not None and not subdataset_filter.match(subdataset):
continue
with rasterio.open(subdataset) as rds:
shape = rds.shape
rioda: DataArray = open_rasterio( # type: ignore
subdataset,
parse_coordinates=shape not in dim_groups and parse_coordinates,
chunks=chunks,
cache=cache,
lock=lock,
masked=masked,
mask_and_scale=mask_and_scale,
default_name=subdataset.split(":")[-1].lstrip("/").replace("/", "_"),
decode_times=decode_times,
decode_timedelta=decode_timedelta,
**open_kwargs,
)
dim_groups[shape][rioda.name] = rioda
return _subdataset_groups_to_dataset(
dim_groups=dim_groups, global_tags=_parse_tags(riods.tags())
)
def _load_bands_as_variables(
riods: RasterioReader,
*,
parse_coordinates: bool,
chunks: Optional[Union[int, tuple, dict]],
cache: Optional[bool],
lock: Any,
masked: bool,
mask_and_scale: bool,
decode_times: bool,
decode_timedelta: Optional[bool],
vrt_params: Optional[dict],
**open_kwargs,
) -> Union[Dataset, list[Dataset]]:
"""
Load in rasterio bands as variables
"""
global_tags = _parse_tags(riods.tags())
data_vars = {}
for band in riods.indexes:
band_riods = SingleBandDatasetReader(
riods=riods,
bidx=band - 1,
vrt_params=vrt_params,
)
band_name = f"band_{band}"
data_vars[band_name] = (
open_rasterio( # type: ignore
band_riods,
parse_coordinates=band == 1 and parse_coordinates,
chunks=chunks,
cache=cache,
lock=lock,
masked=masked,
mask_and_scale=mask_and_scale,
default_name=band_name,
decode_times=decode_times,
decode_timedelta=decode_timedelta,
**open_kwargs,
)
.squeeze() # type: ignore
.drop_vars("band") # type: ignore
)
dataset = Dataset(data_vars, attrs=global_tags)
def _ds_close():
for data_var in data_vars.values():
data_var.close()
dataset.set_close(_ds_close)
return dataset
def _prepare_dask(
*,
result: DataArray,
riods: RasterioReader,
filename: Union[str, os.PathLike],
chunks: Union[int, tuple, dict],
bidx: Optional[int] = None,
) -> DataArray:
"""
Prepare the data for dask computations
"""
# pylint: disable=import-outside-toplevel
from dask.base import tokenize
# augment the token with the file modification time
try:
mtime = os.path.getmtime(filename)
except (TypeError, OSError):
# the filename is probably an s3 bucket rather than a regular file
mtime = None
if chunks in (True, "auto"):
from dask.array.core import normalize_chunks
if not _DASK_GTE_018:
raise NotImplementedError("Automatic chunking requires dask >= 0.18.0")
block_shape = (1,) + riods.block_shapes[0]
chunks = normalize_chunks(
chunks=(1, "auto", "auto"),
shape=(riods.count, riods.height, riods.width),
dtype=_rasterio_to_numpy_dtype(riods.dtypes),
previous_chunks=block_shape,
)
token_filename = filename
if bidx is not None:
token_filename = f"{filename}-{bidx}"
token = tokenize(token_filename, mtime, chunks)
name_prefix = f"open_rasterio-{token}"
return result.chunk(chunks, name_prefix=name_prefix, token=token)
def _handle_encoding(
*,
result: DataArray,
mask_and_scale: bool,
masked: bool,
da_name: Optional[Hashable],
unsigned: Union[bool, None],
) -> None:
"""
Make sure encoding handled properly
"""
if "grid_mapping" in result.attrs:
variables.pop_to(result.attrs, result.encoding, "grid_mapping", name=da_name)
if mask_and_scale:
if "scale_factor" in result.attrs:
variables.pop_to(
result.attrs, result.encoding, "scale_factor", name=da_name
)
if "scales" in result.attrs:
variables.pop_to(result.attrs, result.encoding, "scales", name=da_name)
if "add_offset" in result.attrs:
variables.pop_to(result.attrs, result.encoding, "add_offset", name=da_name)
if "offsets" in result.attrs:
variables.pop_to(result.attrs, result.encoding, "offsets", name=da_name)
if masked:
if "_FillValue" in result.attrs:
variables.pop_to(result.attrs, result.encoding, "_FillValue", name=da_name)
if "missing_value" in result.attrs:
variables.pop_to(
result.attrs, result.encoding, "missing_value", name=da_name
)
if mask_and_scale and unsigned is not None and "_FillValue" in result.encoding:
unsigned_dtype = _get_unsigned_dtype(
unsigned=unsigned,
dtype=result.encoding["dtype"],
)
if unsigned_dtype is not None:
result.encoding["_FillValue"] = unsigned_dtype.type(
result.encoding["_FillValue"]
)
def _single_band_open(*args, bidx=0, **kwargs):
"""
Open file as if it only has a single band
"""
return SingleBandDatasetReader(
riods=rasterio.open(*args, **kwargs),
bidx=bidx,
)
def open_rasterio(
filename: Union[
str,
os.PathLike,
rasterio.io.DatasetReader,
rasterio.vrt.WarpedVRT,
SingleBandDatasetReader,
],
*,
parse_coordinates: Optional[bool] = None,
chunks: Optional[Union[int, tuple, dict]] = None,
cache: Optional[bool] = None,
lock: Optional[Any] = None,
masked: bool = False,
mask_and_scale: bool = False,
variable: Optional[Union[str, list[str], tuple[str, ...]]] = None,
group: Optional[Union[str, list[str], tuple[str, ...]]] = None,
default_name: Optional[str] = None,
decode_times: bool = True,
decode_timedelta: Optional[bool] = None,
band_as_variable: bool = False,
**open_kwargs,
) -> Union[Dataset, DataArray, list[Dataset]]:
# pylint: disable=too-many-statements,too-many-locals,too-many-branches
"""Open a file with rasterio (experimental).
This should work with any file that rasterio can open (most often:
geoTIFF). The x and y coordinates are generated automatically from the
file's geoinformation and refer to the center of the pixel.
.. versionadded:: 0.13 band_as_variable
Parameters
----------
filename: str, rasterio.io.DatasetReader, or rasterio.vrt.WarpedVRT
Path to the file to open. Or already open rasterio dataset.
parse_coordinates: bool, optional
Whether to parse the x and y coordinates out of the file's
``transform`` attribute or not. The default is to automatically
parse the coordinates only if they are rectilinear (1D).
It can be useful to set ``parse_coordinates=False``
if your files are very large or if you don't need the coordinates.
chunks: int, tuple or dict, optional
Chunk sizes along each dimension, e.g., ``5``, ``(5, 5)`` or
``{'x': 5, 'y': 5}``. If chunks is provided, it used to load the new
DataArray into a dask array. Chunks can also be set to
``True`` or ``"auto"`` to choose sensible chunk sizes according to
``dask.config.get("array.chunk-size")``.
cache: bool, optional
If True, cache data loaded from the underlying datastore in memory as
NumPy arrays when accessed to avoid reading from the underlying data-
store multiple times. Defaults to True unless you specify the `chunks`
argument to use dask, in which case it defaults to False.
lock: bool or dask.utils.SerializableLock, optional
If chunks is provided, this argument is used to ensure that only one
thread per process is reading from a rasterio file object at a time.
By default and when a lock instance is provided,
a :class:`xarray.backends.CachingFileManager` is used to cache File objects.
Since rasterio also caches some data, this will make repeated reads from the
same object fast.
When ``lock=False``, no lock is used, allowing for completely parallel reads
from multiple threads or processes. However, a new file handle is opened on
each request.
masked: bool, optional
If True, read the mask and set values to NaN. Defaults to False.
mask_and_scale: bool, default=False
Lazily scale (using the `scales` and `offsets` from rasterio) and mask.
If the _Unsigned attribute is present treat integer arrays as unsigned.
variable: str or list or tuple, optional
Variable name or names to use to filter loading.
group: str or list or tuple, optional
Group name or names to use to filter loading.
default_name: str, optional
The name of the data array if none exists. Default is None.
decode_times: bool, default=True
If True, decode times encoded in the standard NetCDF datetime format
into datetime objects. Otherwise, leave them encoded as numbers.
decode_timedelta: bool, optional
If True, decode variables and coordinates with time units in
{“days”, “hours”, “minutes”, “seconds”, “milliseconds”, “microseconds”}
into timedelta objects. If False, leave them encoded as numbers.
If None (default), assume the same value of decode_time.
band_as_variable: bool, default=False
If True, will load bands in a raster to separate variables.
**open_kwargs: kwargs, optional
Optional keyword arguments to pass into :func:`rasterio.open`.
Returns
-------
:obj:`xarray.Dataset` | :obj:`xarray.DataArray` | list[:obj:`xarray.Dataset`]:
The newly created dataset(s).
"""
parse_coordinates = True if parse_coordinates is None else parse_coordinates
masked = masked or mask_and_scale
vrt_params = None
file_opener = rasterio.open
if isinstance(filename, SingleBandDatasetReader):
file_opener = _single_band_open
open_kwargs.update(bidx=filename._bidx)
vrt_params = filename._vrt_params
if isinstance(filename, (rasterio.io.DatasetReader, SingleBandDatasetReader)):
filename = filename.name
elif isinstance(filename, rasterio.vrt.WarpedVRT):
vrt = filename
filename = vrt.src_dataset.name
vrt_params = {
"src_crs": vrt.src_crs.to_string() if vrt.src_crs else None,
"crs": vrt.dst_crs.to_string() if vrt.dst_crs else None,
"resampling": vrt.resampling,
"tolerance": vrt.tolerance,
"src_nodata": vrt.src_nodata,
"nodata": vrt.dst_nodata,
"width": vrt.dst_width,
"height": vrt.dst_height,
"src_transform": vrt.src_transform,
"transform": vrt.dst_transform,
"dtype": vrt.working_dtype,
**vrt.warp_extras,
}
if lock in (True, None):
lock = RASTERIO_LOCK
elif lock is False:
lock = NO_LOCK
# ensure default for sharing is False
# ref https://github.com/mapbox/rasterio/issues/1504
open_kwargs["sharing"] = open_kwargs.get("sharing", False)
with warnings.catch_warnings(record=True) as rio_warnings:
if lock is not NO_LOCK and isinstance(filename, (str, os.PathLike)):
manager: FileManager = CachingFileManager(
file_opener, filename, lock=lock, mode="r", kwargs=open_kwargs
)
else:
manager = URIManager(file_opener, filename, mode="r", kwargs=open_kwargs)
riods = manager.acquire()
captured_warnings = rio_warnings.copy()
# raise the NotGeoreferencedWarning if applicable
for rio_warning in captured_warnings:
if not riods.subdatasets or not isinstance(
rio_warning.message, NotGeoreferencedWarning
):
warnings.warn(str(rio_warning.message), type(rio_warning.message)) # type: ignore
# open the subdatasets if they exist
if riods.subdatasets:
subdataset_result = _load_subdatasets(
riods=riods,
group=group,
variable=variable,
parse_coordinates=parse_coordinates,
chunks=chunks,
cache=cache,
lock=lock,
masked=masked,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
decode_timedelta=decode_timedelta,
**open_kwargs,
)
manager.close()
return subdataset_result
if band_as_variable:
dataset_result = _load_bands_as_variables(
riods=riods,
parse_coordinates=parse_coordinates,
chunks=chunks,
cache=cache,
lock=lock,
masked=masked,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
decode_timedelta=decode_timedelta,
vrt_params=vrt_params,
**open_kwargs,
)
manager.close()
return dataset_result
if cache is None:
cache = chunks is None
riods = _ensure_warped_vrt(riods, vrt_params)
# Get bands
if riods.count < 1:
raise ValueError("Unknown dims")
# parse tags & load alternate coords
attrs = _get_rasterio_attrs(riods=riods)
coords = _load_netcdf_1d_coords(attrs)
_parse_driver_tags(riods=riods, attrs=attrs, coords=coords)
for coord in coords:
if f"NETCDF_DIM_{coord}" in attrs:
coord_name = coord
attrs.pop(f"NETCDF_DIM_{coord}")
break
if f"NETCDF_DIM_{coord}_VALUES" in attrs:
coord_name = coord
attrs.pop(f"NETCDF_DIM_{coord}_VALUES")
attrs.pop(f"NETCDF_DIM_{coord}_DEF", None)
attrs.pop("NETCDF_DIM_EXTRA", None)
break
else:
coord_name = "band"
coords[coord_name] = numpy.asarray(riods.indexes)
has_gcps = riods.gcps[0]
if has_gcps:
parse_coordinates = False
# Get geospatial coordinates
if parse_coordinates:
coords.update(
_generate_spatial_coords(
affine=riods.transform, width=riods.width, height=riods.height
)
)
unsigned = None
encoding: dict[Hashable, Any] = {}
if mask_and_scale and "_Unsigned" in attrs:
unsigned = variables.pop_to(attrs, encoding, "_Unsigned") == "true"
if masked:
encoding["dtype"] = str(_rasterio_to_numpy_dtype(riods.dtypes))
da_name = attrs.pop("NETCDF_VARNAME", default_name)
data: Any = indexing.LazilyOuterIndexedArray(
RasterioArrayWrapper(
manager=manager,
lock=lock,
name=da_name,
vrt_params=vrt_params,
masked=masked,
mask_and_scale=mask_and_scale,
unsigned=unsigned,
)
)
# this lets you write arrays loaded with rasterio
data = indexing.CopyOnWriteArray(data)
if cache and chunks is None:
data = indexing.MemoryCachedArray(data)
result = DataArray(
data=data, dims=(coord_name, "y", "x"), coords=coords, attrs=attrs, name=da_name
)
result.encoding = encoding
# update attributes from NetCDF attributes
_load_netcdf_attrs(tags=riods.tags(), data_array=result)
result = _decode_datetime_cf(
result, decode_times=decode_times, decode_timedelta=decode_timedelta
)
# make sure the _FillValue is correct dtype
if "_FillValue" in result.attrs:
result.attrs["_FillValue"] = result.dtype.type(result.attrs["_FillValue"])
# handle encoding
_handle_encoding(
result=result,
mask_and_scale=mask_and_scale,
masked=masked,
da_name=da_name,
unsigned=unsigned,
)
# Affine transformation matrix (always available)
# This describes coefficients mapping pixel coordinates to CRS
# For serialization store as tuple of 6 floats, the last row being
# always (0, 0, 1) per definition (see
# https://github.com/sgillies/affine)
result.rio.write_transform(riods.transform, inplace=True)
rio_crs = riods.crs or result.rio.crs
if rio_crs:
result.rio.write_crs(rio_crs, inplace=True)
if has_gcps:
result.rio.write_gcps(*riods.gcps, inplace=True)
if chunks is not None:
result = _prepare_dask(
result=result,
riods=riods,
filename=filename,
chunks=chunks,
bidx=open_kwargs.get("bidx"),
)
else:
result.encoding["preferred_chunks"] = {
result.rio.y_dim: riods.block_shapes[0][0],
result.rio.x_dim: riods.block_shapes[0][1],
coord_name: 1,
}
# add file path to encoding
result.encoding["source"] = riods.name
result.encoding["rasterio_dtype"] = str(riods.dtypes[0])
# remove duplicate coordinate information
for coord in result.coords:
result.attrs = {
attr: value
for attr, value in result.attrs.items()
if not attr.startswith(f"{coord}#")
}
# remove duplicate tags
if result.name:
result.attrs = {
attr: value
for attr, value in result.attrs.items()
if not attr.startswith(f"{result.name}#")
}
# Make the file closeable
result.set_close(manager.close)
result.rio._manager = manager
return result
|