1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
"""
This module allows you to merge xarray Datasets/DataArrays
geospatially with the `rasterio.merge` module.
"""
from collections.abc import Sequence
from typing import Callable, Optional, Union
import numpy
from rasterio.crs import CRS
from rasterio.merge import merge as _rio_merge
from xarray import DataArray, Dataset, IndexVariable
from rioxarray.rioxarray import _get_nonspatial_coords, _make_coords
class RasterioDatasetDuck:
"""
This class is to provide the attributes and methods necessary
to make the :func:`rasterio.merge.merge` function think that
the :obj:`xarray.DataArray` is a :obj:`rasterio.io.DatasetReader`.
"""
# pylint: disable=too-many-instance-attributes
def __init__(self, xds: DataArray):
self._xds = xds
self.crs = xds.rio.crs
self.bounds = xds.rio.bounds(recalc=True)
self.count = int(xds.rio.count)
self.dtypes = [xds.dtype]
self.name = xds.name
self.nodatavals = [xds.rio.nodata]
res = xds.rio.resolution(recalc=True)
self.res = (abs(res[0]), abs(res[1]))
self.transform = xds.rio.transform(recalc=True)
# profile is only used for writing to a file.
# This never happens with rioxarray merge.
self.profile: dict = {}
def colormap(self, *args, **kwargs) -> None:
"""
colormap is only used for writing to a file.
This never happens with rioxarray merge.
"""
# pylint: disable=unused-argument
return None
def read(self, window, out_shape, *args, **kwargs) -> numpy.ma.MaskedArray:
# pylint: disable=unused-argument
"""
This method is meant to be used by the rasterio.merge.merge function.
"""
data_window = self._xds.rio.isel_window(window)
if data_window.shape != out_shape:
# in this section, the data is geographically the same
# however it is not the same dimensions as requested
# so need to resample to the requested shape
if len(out_shape) == 3:
_, out_height, out_width = out_shape
else:
out_height, out_width = out_shape
data_window = self._xds.rio.reproject(
self._xds.rio.crs,
transform=self.transform,
shape=(out_height, out_width),
)
nodata = self.nodatavals[0]
mask = False
fill_value = None
if nodata is not None and numpy.isnan(nodata):
mask = numpy.isnan(data_window)
elif nodata is not None:
mask = data_window == nodata
fill_value = nodata
# make sure the returned shape matches
# the expected shape. This can be the case
# when the xarray dataset was squeezed to 2D beforehand
if len(out_shape) == 3 and len(data_window.shape) == 2:
data_window = data_window.values.reshape((1, out_height, out_width))
return numpy.ma.array(
data_window, mask=mask, fill_value=fill_value, dtype=self.dtypes[0]
)
def merge_arrays(
dataarrays: Sequence[DataArray],
*,
bounds: Optional[tuple] = None,
res: Optional[tuple] = None,
nodata: Optional[float] = None,
precision: Optional[float] = None,
method: Union[str, Callable, None] = None,
crs: Optional[CRS] = None,
parse_coordinates: bool = True,
) -> DataArray:
"""
Merge data arrays geospatially.
Uses :func:`rasterio.merge.merge`
.. versionadded:: 0.2 crs
Parameters
----------
dataarrays: list[xarray.DataArray]
List of multiple xarray.DataArray with all geo attributes.
The first one is assumed to have the same
CRS, dtype, and dimensions as the others in the array.
bounds: tuple, optional
Bounds of the output image (left, bottom, right, top).
If not set, bounds are determined from bounds of input DataArrays.
res: tuple, optional
Output resolution in units of coordinate reference system.
If not set, the resolution of the first DataArray is used.
If a single value is passed, output pixels will be square.
nodata: float, optional
nodata value to use in output file.
If not set, uses the nodata value in the first input DataArray.
precision: float, optional
Number of decimal points of precision when computing inverse transform.
method: str or callable, optional
See :func:`rasterio.merge.merge` for details.
crs: rasterio.crs.CRS, optional
Output CRS. If not set, the CRS of the first DataArray is used.
parse_coordinates: bool, optional
If False, it will disable loading spatial coordinates.
Returns
-------
:obj:`xarray.DataArray`:
The geospatially merged data.
"""
input_kwargs = {
"bounds": bounds,
"res": res,
"nodata": nodata,
"precision": precision,
"method": method,
}
if crs is None:
crs = dataarrays[0].rio.crs
if res is None:
res = tuple(abs(res_val) for res_val in dataarrays[0].rio.resolution())
# prepare the duck arrays
rioduckarrays = []
for dataarray in dataarrays:
da_res = tuple(abs(res_val) for res_val in dataarray.rio.resolution())
if da_res != res or dataarray.rio.crs != crs:
rioduckarrays.append(
RasterioDatasetDuck(
dataarray.rio.reproject(dst_crs=crs, resolution=res)
)
)
else:
rioduckarrays.append(RasterioDatasetDuck(dataarray))
# use rasterio to merge
merged_data, merged_transform = _rio_merge(
rioduckarrays,
**{key: val for key, val in input_kwargs.items() if val is not None},
)
# generate merged data array
representative_array = rioduckarrays[0]._xds
if parse_coordinates:
coords = _make_coords(
src_data_array=representative_array,
dst_affine=merged_transform,
dst_width=merged_data.shape[-1],
dst_height=merged_data.shape[-2],
)
if (
representative_array.rio.x_dim != "x"
and "x" in coords
and coords["x"].ndim == 1
):
coords[representative_array.rio.x_dim] = IndexVariable(
representative_array.rio.x_dim, coords.pop("x")
)
if (
representative_array.rio.y_dim != "y"
and "y" in coords
and coords["y"].ndim == 1
):
coords[representative_array.rio.y_dim] = IndexVariable(
representative_array.rio.y_dim, coords.pop("y")
)
else:
coords = _get_nonspatial_coords(representative_array)
# make sure the output merged data shape is 2D if the
# original data was 2D. this can happen if the
# xarray datasarray was squeezed.
if len(merged_data.shape) == 3 and len(representative_array.shape) == 2:
merged_data = merged_data.squeeze()
xda = DataArray(
name=representative_array.name,
data=merged_data,
coords=coords,
dims=tuple(representative_array.dims),
attrs=representative_array.attrs,
)
xda.encoding = representative_array.encoding.copy()
xda.rio.write_nodata(
nodata if nodata is not None else representative_array.rio.nodata, inplace=True
)
xda.rio.write_crs(
representative_array.rio.crs,
grid_mapping_name=representative_array.rio.grid_mapping,
inplace=True,
)
xda.rio.write_transform(
merged_transform,
grid_mapping_name=representative_array.rio.grid_mapping,
inplace=True,
)
return xda
def merge_datasets(
datasets: Sequence[Dataset],
*,
bounds: Optional[tuple] = None,
res: Optional[tuple] = None,
nodata: Optional[float] = None,
precision: Optional[float] = None,
method: Union[str, Callable, None] = None,
crs: Optional[CRS] = None,
) -> Dataset:
"""
Merge datasets geospatially.
Uses :func:`rasterio.merge.merge`
.. versionadded:: 0.2 crs
Parameters
----------
datasets: list[xarray.Dataset]
List of multiple xarray.Dataset with all geo attributes.
The first one is assumed to have the same
CRS, dtype, dimensions, and data_vars as the others in the array.
bounds: tuple, optional
Bounds of the output image (left, bottom, right, top).
If not set, bounds are determined from bounds of input Dataset.
res: tuple, optional
Output resolution in units of coordinate reference system.
If not set, the resolution of the first Dataset is used.
If a single value is passed, output pixels will be square.
nodata: float, optional
nodata value to use in output file.
If not set, uses the nodata value in the first input Dataset.
precision: float, optional
Number of decimal points of precision when computing inverse transform.
method: str or callable, optional
See rasterio docs.
crs: rasterio.crs.CRS, optional
Output CRS. If not set, the CRS of the first DataArray is used.
Returns
-------
:obj:`xarray.Dataset`:
The geospatially merged data.
"""
representative_ds = datasets[0]
merged_data = {}
for iii, data_var in enumerate(representative_ds.data_vars):
merged_data[data_var] = merge_arrays(
[dataset[data_var] for dataset in datasets],
bounds=bounds,
res=res,
nodata=nodata,
precision=precision,
method=method,
crs=crs,
parse_coordinates=iii == 0,
)
data_var = list(representative_ds.data_vars)[0]
xds = Dataset(
merged_data,
attrs=representative_ds.attrs,
)
xds.rio.write_crs(merged_data[data_var].rio.crs, inplace=True)
return xds
|