File: merge.py

package info (click to toggle)
python-rioxarray 0.19.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,304 kB
  • sloc: python: 7,893; makefile: 93
file content (291 lines) | stat: -rw-r--r-- 9,997 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""
This module allows you to merge xarray Datasets/DataArrays
geospatially with the `rasterio.merge` module.
"""

from collections.abc import Sequence
from typing import Callable, Optional, Union

import numpy
from rasterio.crs import CRS
from rasterio.merge import merge as _rio_merge
from xarray import DataArray, Dataset, IndexVariable

from rioxarray.rioxarray import _get_nonspatial_coords, _make_coords


class RasterioDatasetDuck:
    """
    This class is to provide the attributes and methods necessary
    to make the :func:`rasterio.merge.merge` function think that
    the :obj:`xarray.DataArray` is a :obj:`rasterio.io.DatasetReader`.
    """

    # pylint: disable=too-many-instance-attributes

    def __init__(self, xds: DataArray):
        self._xds = xds
        self.crs = xds.rio.crs
        self.bounds = xds.rio.bounds(recalc=True)
        self.count = int(xds.rio.count)
        self.dtypes = [xds.dtype]
        self.name = xds.name
        self.nodatavals = [xds.rio.nodata]
        res = xds.rio.resolution(recalc=True)
        self.res = (abs(res[0]), abs(res[1]))
        self.transform = xds.rio.transform(recalc=True)
        # profile is only used for writing to a file.
        # This never happens with rioxarray merge.
        self.profile: dict = {}

    def colormap(self, *args, **kwargs) -> None:
        """
        colormap is only used for writing to a file.
        This never happens with rioxarray merge.
        """
        # pylint: disable=unused-argument
        return None

    def read(self, window, out_shape, *args, **kwargs) -> numpy.ma.MaskedArray:
        # pylint: disable=unused-argument
        """
        This method is meant to be used by the rasterio.merge.merge function.
        """
        data_window = self._xds.rio.isel_window(window)
        if data_window.shape != out_shape:
            # in this section, the data is geographically the same
            # however it is not the same dimensions as requested
            # so need to resample to the requested shape
            if len(out_shape) == 3:
                _, out_height, out_width = out_shape
            else:
                out_height, out_width = out_shape
            data_window = self._xds.rio.reproject(
                self._xds.rio.crs,
                transform=self.transform,
                shape=(out_height, out_width),
            )

        nodata = self.nodatavals[0]
        mask = False
        fill_value = None
        if nodata is not None and numpy.isnan(nodata):
            mask = numpy.isnan(data_window)
        elif nodata is not None:
            mask = data_window == nodata
            fill_value = nodata

        # make sure the returned shape matches
        # the expected shape. This can be the case
        # when the xarray dataset was squeezed to 2D beforehand
        if len(out_shape) == 3 and len(data_window.shape) == 2:
            data_window = data_window.values.reshape((1, out_height, out_width))

        return numpy.ma.array(
            data_window, mask=mask, fill_value=fill_value, dtype=self.dtypes[0]
        )


def merge_arrays(
    dataarrays: Sequence[DataArray],
    *,
    bounds: Optional[tuple] = None,
    res: Optional[tuple] = None,
    nodata: Optional[float] = None,
    precision: Optional[float] = None,
    method: Union[str, Callable, None] = None,
    crs: Optional[CRS] = None,
    parse_coordinates: bool = True,
) -> DataArray:
    """
    Merge data arrays geospatially.

    Uses :func:`rasterio.merge.merge`

    .. versionadded:: 0.2 crs

    Parameters
    ----------
    dataarrays: list[xarray.DataArray]
        List of multiple xarray.DataArray with all geo attributes.
        The first one is assumed to have the same
        CRS, dtype, and dimensions as the others in the array.
    bounds: tuple, optional
        Bounds of the output image (left, bottom, right, top).
        If not set, bounds are determined from bounds of input DataArrays.
    res: tuple, optional
        Output resolution in units of coordinate reference system.
        If not set, the resolution of the first DataArray is used.
        If a single value is passed, output pixels will be square.
    nodata: float, optional
        nodata value to use in output file.
        If not set, uses the nodata value in the first input DataArray.
    precision: float, optional
        Number of decimal points of precision when computing inverse transform.
    method: str or callable, optional
        See :func:`rasterio.merge.merge` for details.
    crs: rasterio.crs.CRS, optional
        Output CRS. If not set, the CRS of the first DataArray is used.
    parse_coordinates: bool, optional
        If False, it will disable loading spatial coordinates.

    Returns
    -------
    :obj:`xarray.DataArray`:
        The geospatially merged data.
    """
    input_kwargs = {
        "bounds": bounds,
        "res": res,
        "nodata": nodata,
        "precision": precision,
        "method": method,
    }

    if crs is None:
        crs = dataarrays[0].rio.crs
    if res is None:
        res = tuple(abs(res_val) for res_val in dataarrays[0].rio.resolution())

    # prepare the duck arrays
    rioduckarrays = []
    for dataarray in dataarrays:
        da_res = tuple(abs(res_val) for res_val in dataarray.rio.resolution())
        if da_res != res or dataarray.rio.crs != crs:
            rioduckarrays.append(
                RasterioDatasetDuck(
                    dataarray.rio.reproject(dst_crs=crs, resolution=res)
                )
            )
        else:
            rioduckarrays.append(RasterioDatasetDuck(dataarray))

    # use rasterio to merge
    merged_data, merged_transform = _rio_merge(
        rioduckarrays,
        **{key: val for key, val in input_kwargs.items() if val is not None},
    )
    # generate merged data array
    representative_array = rioduckarrays[0]._xds
    if parse_coordinates:
        coords = _make_coords(
            src_data_array=representative_array,
            dst_affine=merged_transform,
            dst_width=merged_data.shape[-1],
            dst_height=merged_data.shape[-2],
        )
        if (
            representative_array.rio.x_dim != "x"
            and "x" in coords
            and coords["x"].ndim == 1
        ):
            coords[representative_array.rio.x_dim] = IndexVariable(
                representative_array.rio.x_dim, coords.pop("x")
            )
        if (
            representative_array.rio.y_dim != "y"
            and "y" in coords
            and coords["y"].ndim == 1
        ):
            coords[representative_array.rio.y_dim] = IndexVariable(
                representative_array.rio.y_dim, coords.pop("y")
            )
    else:
        coords = _get_nonspatial_coords(representative_array)

    # make sure the output merged data shape is 2D if the
    # original data was 2D. this can happen if the
    # xarray datasarray was squeezed.
    if len(merged_data.shape) == 3 and len(representative_array.shape) == 2:
        merged_data = merged_data.squeeze()

    xda = DataArray(
        name=representative_array.name,
        data=merged_data,
        coords=coords,
        dims=tuple(representative_array.dims),
        attrs=representative_array.attrs,
    )
    xda.encoding = representative_array.encoding.copy()
    xda.rio.write_nodata(
        nodata if nodata is not None else representative_array.rio.nodata, inplace=True
    )
    xda.rio.write_crs(
        representative_array.rio.crs,
        grid_mapping_name=representative_array.rio.grid_mapping,
        inplace=True,
    )
    xda.rio.write_transform(
        merged_transform,
        grid_mapping_name=representative_array.rio.grid_mapping,
        inplace=True,
    )
    return xda


def merge_datasets(
    datasets: Sequence[Dataset],
    *,
    bounds: Optional[tuple] = None,
    res: Optional[tuple] = None,
    nodata: Optional[float] = None,
    precision: Optional[float] = None,
    method: Union[str, Callable, None] = None,
    crs: Optional[CRS] = None,
) -> Dataset:
    """
    Merge datasets geospatially.

    Uses :func:`rasterio.merge.merge`

    .. versionadded:: 0.2 crs

    Parameters
    ----------
    datasets: list[xarray.Dataset]
        List of multiple xarray.Dataset with all geo attributes.
        The first one is assumed to have the same
        CRS, dtype, dimensions, and data_vars as the others in the array.
    bounds: tuple, optional
        Bounds of the output image (left, bottom, right, top).
        If not set, bounds are determined from bounds of input Dataset.
    res: tuple, optional
        Output resolution in units of coordinate reference system.
        If not set, the resolution of the first Dataset is used.
        If a single value is passed, output pixels will be square.
    nodata: float, optional
        nodata value to use in output file.
        If not set, uses the nodata value in the first input Dataset.
    precision: float, optional
        Number of decimal points of precision when computing inverse transform.
    method: str or callable, optional
        See rasterio docs.
    crs: rasterio.crs.CRS, optional
        Output CRS. If not set, the CRS of the first DataArray is used.

    Returns
    -------
    :obj:`xarray.Dataset`:
        The geospatially merged data.
    """

    representative_ds = datasets[0]
    merged_data = {}
    for iii, data_var in enumerate(representative_ds.data_vars):
        merged_data[data_var] = merge_arrays(
            [dataset[data_var] for dataset in datasets],
            bounds=bounds,
            res=res,
            nodata=nodata,
            precision=precision,
            method=method,
            crs=crs,
            parse_coordinates=iii == 0,
        )
    data_var = list(representative_ds.data_vars)[0]
    xds = Dataset(
        merged_data,
        attrs=representative_ds.attrs,
    )
    xds.rio.write_crs(merged_data[data_var].rio.crs, inplace=True)
    return xds