1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
|
"""
This module is an extension for xarray to provide rasterio capabilities
to xarray dataarrays.
Credits: The `reproject` functionality was adopted from https://github.com/opendatacube/datacube-core # noqa: E501
Source file:
- https://github.com/opendatacube/datacube-core/blob/084c84d78cb6e1326c7fbbe79c5b5d0bef37c078/datacube/api/geo_xarray.py # noqa: E501
datacube is licensed under the Apache License, Version 2.0:
- https://github.com/opendatacube/datacube-core/blob/1d345f08a10a13c316f81100936b0ad8b1a374eb/LICENSE # noqa: E501
"""
import copy
import os
from collections.abc import Hashable, Iterable, Mapping
from pathlib import Path
from typing import Any, Literal, Optional, Union
import numpy
import rasterio
import rasterio.mask
import rasterio.warp
import xarray
from affine import Affine
from rasterio.dtypes import dtype_rev
from rasterio.enums import Resampling
from rasterio.features import geometry_mask
from xarray.backends.file_manager import FileManager
from xarray.core.dtypes import get_fill_value
from rioxarray._io import FILL_VALUE_NAMES, UNWANTED_RIO_ATTRS
from rioxarray.crs import crs_from_user_input
from rioxarray.exceptions import (
MissingCRS,
NoDataInBounds,
OneDimensionalRaster,
RioXarrayError,
)
from rioxarray.raster_writer import RasterioWriter, _ensure_nodata_dtype
from rioxarray.rioxarray import (
XRasterBase,
_get_data_var_message,
_make_coords,
_order_bounds,
)
# DTYPE TO NODATA MAP
# Based on: https://github.com/OSGeo/gdal/blob/
# dee861e7c91c2da7ef8ff849947713e4d9bd115c/
# swig/python/gdal-utils/osgeo_utils/gdal_calc.py#L61
# And: https://github.com/rasterio/rasterio/blob/
# 9e643c3f563a679aa5400d9b1a263df97b34f9e0/rasterio/dtypes.py#L99-L112
_NODATA_DTYPE_MAP = {
1: 255, # GDT_Byte
2: 65535, # GDT_UInt16
3: -32768, # GDT_Int16
4: 4294967295, # GDT_UInt32
5: -2147483648, # GDT_Int32
6: numpy.nan, # GDT_Float32
7: numpy.nan, # GDT_Float64
8: None, # GDT_CInt16
9: None, # GDT_CInt32
10: numpy.nan, # GDT_CFloat32
11: numpy.nan, # GDT_CFloat64
12: 18446744073709551615, # GDT_UInt64
13: -9223372036854775808, # GDT_Int64
14: -128, # GDT_Int8
}
def _generate_attrs(
*, src_data_array: xarray.DataArray, dst_nodata: Optional[float]
) -> dict[str, Any]:
# add original attributes
new_attrs = copy.deepcopy(src_data_array.attrs)
# remove all nodata information
for unwanted_attr in FILL_VALUE_NAMES + UNWANTED_RIO_ATTRS:
new_attrs.pop(unwanted_attr, None)
# add nodata information
fill_value = (
src_data_array.rio.nodata
if src_data_array.rio.nodata is not None
else dst_nodata
)
if src_data_array.rio.encoded_nodata is None and fill_value is not None:
new_attrs["_FillValue"] = fill_value
return new_attrs
def _add_attrs_proj(
*, new_data_array: xarray.DataArray, src_data_array: xarray.DataArray
) -> xarray.DataArray:
"""Make sure attributes and projection correct"""
# make sure dimension information is preserved
if new_data_array.rio._x_dim is None:
new_data_array.rio._x_dim = src_data_array.rio.x_dim
if new_data_array.rio._y_dim is None:
new_data_array.rio._y_dim = src_data_array.rio.y_dim
# make sure attributes preserved
new_attrs = _generate_attrs(src_data_array=src_data_array, dst_nodata=None)
# remove fill value if it already exists in the encoding
# this is for data arrays pulling the encoding from a
# source data array instead of being generated anew.
if "_FillValue" in new_data_array.encoding:
new_attrs.pop("_FillValue", None)
new_data_array.rio.set_attrs(new_attrs, inplace=True)
# make sure projection added
new_data_array.rio.write_grid_mapping(src_data_array.rio.grid_mapping, inplace=True)
new_data_array.rio.write_crs(src_data_array.rio.crs, inplace=True)
new_data_array.rio.write_coordinate_system(inplace=True)
new_data_array.rio.write_transform(inplace=True)
# make sure encoding added
new_data_array.encoding = src_data_array.encoding.copy()
return new_data_array
def _make_dst_affine(
*,
src_data_array: xarray.DataArray,
src_crs: rasterio.crs.CRS,
dst_crs: rasterio.crs.CRS,
dst_resolution: Optional[Union[float, tuple[float, float]]] = None,
dst_shape: Optional[tuple[float, float]] = None,
**kwargs,
):
"""Determine the affine of the new projected `xarray.DataArray`"""
src_bounds = ()
if (
"gcps" not in kwargs
and "rpcs" not in kwargs
and "src_geoloc_array" not in kwargs
):
src_bounds = src_data_array.rio.bounds()
src_height, src_width = src_data_array.rio.shape
dst_height, dst_width = dst_shape if dst_shape is not None else (None, None)
# pylint: disable=isinstance-second-argument-not-valid-type
if isinstance(dst_resolution, Iterable):
dst_resolution = tuple(abs(res_val) for res_val in dst_resolution) # type: ignore
elif dst_resolution is not None:
dst_resolution = abs(dst_resolution) # type: ignore
for key, value in (
("resolution", dst_resolution),
("dst_height", dst_height),
("dst_width", dst_width),
):
if value is not None:
kwargs[key] = value
dst_affine, dst_width, dst_height = rasterio.warp.calculate_default_transform(
src_crs,
dst_crs,
src_width,
src_height,
*src_bounds,
**kwargs,
)
return dst_affine, dst_width, dst_height
def _clip_from_disk(
xds: xarray.DataArray,
*,
geometries: Iterable,
all_touched: bool,
drop: bool,
invert: bool,
) -> Optional[xarray.DataArray]:
"""
clip from disk if the file object is available
"""
try:
out_image, out_transform = rasterio.mask.mask(
xds.rio._manager.acquire(),
geometries,
all_touched=all_touched,
invert=invert,
crop=drop,
)
if xds.rio.encoded_nodata is not None and not numpy.isnan(
xds.rio.encoded_nodata
):
out_image = out_image.astype(numpy.float64)
out_image[out_image == xds.rio.encoded_nodata] = numpy.nan
height, width = out_image.shape[-2:]
cropped_ds = xarray.DataArray(
name=xds.name,
data=out_image,
coords=_make_coords(
src_data_array=xds,
dst_affine=out_transform,
dst_width=width,
dst_height=height,
),
dims=xds.dims,
attrs=xds.attrs,
)
cropped_ds.encoding = xds.encoding
return cropped_ds
except AttributeError:
return None
def _clip_xarray(
xds: xarray.DataArray,
*,
geometries: Iterable,
all_touched: bool,
drop: bool,
invert: bool,
) -> xarray.DataArray:
"""
clip the xarray DataArray
"""
clip_mask_arr = geometry_mask(
geometries=geometries,
out_shape=(int(xds.rio.height), int(xds.rio.width)),
transform=xds.rio.transform(recalc=True),
invert=not invert,
all_touched=all_touched,
)
clip_mask_xray = xarray.DataArray(
clip_mask_arr,
dims=(xds.rio.y_dim, xds.rio.x_dim),
)
cropped_ds = xds.where(clip_mask_xray)
if drop:
cropped_ds.rio.set_spatial_dims(
x_dim=xds.rio.x_dim, y_dim=xds.rio.y_dim, inplace=True
)
cropped_ds = cropped_ds.rio.isel_window(
rasterio.windows.get_data_window(
numpy.ma.masked_array(clip_mask_arr, ~clip_mask_arr)
)
)
if xds.rio.nodata is not None and not numpy.isnan(xds.rio.nodata):
cropped_ds = cropped_ds.fillna(xds.rio.nodata)
return cropped_ds.astype(xds.dtype)
@xarray.register_dataarray_accessor("rio")
class RasterArray(XRasterBase):
"""This is the GIS extension for :obj:`xarray.DataArray`"""
def __init__(self, xarray_obj: xarray.DataArray):
super().__init__(xarray_obj)
self._obj: xarray.DataArray
# properties
self._nodata: Optional[float] = None
self._manager: Optional[
FileManager
] = None # https://github.com/corteva/rioxarray/issues/254
def set_nodata(
self, input_nodata: Optional[float], *, inplace: bool = True
) -> xarray.DataArray:
"""
Set the nodata value for the DataArray without modifying
the data array.
Parameters
----------
input_nodata: Optional[float]
Valid nodata for dtype.
inplace: bool, optional
If True, it will write to the existing dataset. Default is True.
Returns
-------
:obj:`xarray.DataArray`:
Dataset with nodata attribute set.
"""
obj: xarray.DataArray = self._get_obj(inplace=inplace) # type: ignore
obj.rio._nodata = input_nodata
return obj
def write_nodata(
self, input_nodata: Optional[float], *, encoded: bool = False, inplace=False
) -> xarray.DataArray:
"""
Write the nodata to the DataArray in a CF compliant manner.
Parameters
----------
input_nodata: Optional[float]
Nodata value for the DataArray.
If input_nodata is None, it will remove the _FillValue attribute.
encoded: bool, optional
If True, it will write the nodata value in the encoding and remove
the fill value from the attributes. This is useful for masking
with nodata. Default is False.
inplace: bool, optional
If True, it will write to the existing DataArray. Default is False.
Returns
-------
:obj:`xarray.DataArray`:
Modified DataArray with CF compliant nodata information.
Examples
--------
To write the nodata value if it is missing:
>>> raster.rio.write_nodata(-9999, inplace=True)
To write the nodata value on a copy:
>>> raster = raster.rio.write_nodata(-9999)
To mask with nodata:
>>> nodata = raster.rio.nodata
>>> raster = raster.where(raster != nodata)
>>> raster.rio.write_nodata(nodata, encoded=True, inplace=True)
"""
data_obj: xarray.DataArray = self._get_obj(inplace=inplace) # type: ignore
input_nodata = False if input_nodata is None else input_nodata
if input_nodata is not False:
input_nodata = _ensure_nodata_dtype(
original_nodata=input_nodata, new_dtype=self._obj.dtype
)
if encoded:
data_obj.rio.update_encoding({"_FillValue": input_nodata}, inplace=True)
else:
data_obj.rio.update_attrs({"_FillValue": input_nodata}, inplace=True)
if input_nodata is False or encoded:
new_attrs = dict(data_obj.attrs)
new_attrs.pop("_FillValue", None)
data_obj.rio.set_attrs(new_attrs, inplace=True)
if input_nodata is False and encoded:
new_encoding = dict(data_obj.encoding)
new_encoding.pop("_FillValue", None)
data_obj.rio.set_encoding(new_encoding, inplace=True)
if not encoded:
data_obj.rio.set_nodata(input_nodata, inplace=True)
return data_obj
@property
def encoded_nodata(self) -> Optional[float]:
"""Return the encoded nodata value for the dataset if encoded."""
encoded_nodata = self._obj.encoding.get("_FillValue")
if encoded_nodata is None:
return None
return _ensure_nodata_dtype(
original_nodata=encoded_nodata, new_dtype=self._obj.dtype
)
@property
def nodata(self) -> Optional[float]:
"""Get the nodata value for the dataset."""
if self._nodata is not None:
return None if self._nodata is False else self._nodata
if self.encoded_nodata is not None:
self._nodata = get_fill_value(self._obj.dtype)
else:
self._nodata = self._obj.attrs.get(
"_FillValue",
self._obj.attrs.get(
"missing_value",
self._obj.attrs.get("fill_value", self._obj.attrs.get("nodata")),
),
)
# look in places used by `xarray.open_rasterio`
if self._nodata is None:
try:
self._nodata = self._manager.acquire().nodata # type: ignore
except AttributeError:
try:
self._nodata = self._obj.attrs["nodatavals"][0]
except (KeyError, IndexError):
pass
if self._nodata is None:
self._nodata = False
return None
self._nodata = _ensure_nodata_dtype(
original_nodata=self._nodata, new_dtype=self._obj.dtype
)
return self._nodata
def reproject(
self,
dst_crs: Any,
*,
resolution: Optional[Union[float, tuple[float, float]]] = None,
shape: Optional[tuple[int, int]] = None,
transform: Optional[Affine] = None,
resampling: Resampling = Resampling.nearest,
nodata: Optional[float] = None,
**kwargs,
) -> xarray.DataArray:
"""
Reproject :obj:`xarray.DataArray` objects
Powered by :func:`rasterio.warp.reproject`
.. note:: Only 2D/3D arrays with dimensions 'x'/'y' are currently supported.
Requires either a grid mapping variable with 'spatial_ref' or
a 'crs' attribute to be set containing a valid CRS.
If using a WKT (e.g. from spatiareference.org), make sure it is an OGC WKT.
.. note:: To re-project with dask, see
`odc-geo <https://odc-geo.readthedocs.io/>`__ &
`pyresample <https://pyresample.readthedocs.io/>`__.
.. versionadded:: 0.0.27 shape
.. versionadded:: 0.0.28 transform
.. versionadded:: 0.5.0 nodata, kwargs
Parameters
----------
dst_crs: str
OGC WKT string or Proj.4 string.
resolution: float or tuple(float, float), optional
Size of a destination pixel in destination projection units
(e.g. degrees or metres).
shape: tuple(int, int), optional
Shape of the destination in pixels (dst_height, dst_width). Cannot be used
together with resolution.
transform: Affine, optional
The destination transform.
resampling: rasterio.enums.Resampling, optional
See :func:`rasterio.warp.reproject` for more details.
nodata: float, optional
The nodata value used to initialize the destination;
it will remain in all areas not covered by the reprojected source.
Defaults to the nodata value of the source image if none provided
and exists or attempts to find an appropriate value by dtype.
**kwargs: dict
Additional keyword arguments to pass into :func:`rasterio.warp.reproject`.
To override:
- src_transform: `rio.write_transform`
- src_crs: `rio.write_crs`
- src_nodata: `rio.write_nodata`
Returns
-------
:obj:`xarray.DataArray`:
The reprojected DataArray.
"""
if resolution is not None and (shape is not None or transform is not None):
raise RioXarrayError("resolution cannot be used with shape or transform.")
if self.crs is None:
raise MissingCRS(
"CRS not found. Please set the CRS with 'rio.write_crs()'."
f"{_get_data_var_message(self._obj)}"
)
gcps = self.get_gcps()
if gcps:
kwargs.setdefault("gcps", gcps)
use_affine = (
"gcps" not in kwargs
and "rpcs" not in kwargs
and "src_geoloc_array" not in kwargs
)
src_affine = None if not use_affine else self.transform(recalc=True)
if transform is None:
dst_affine, dst_width, dst_height = _make_dst_affine(
src_data_array=self._obj,
src_crs=self.crs,
dst_crs=dst_crs,
dst_resolution=resolution,
dst_shape=shape,
**kwargs,
)
else:
dst_affine = transform
if shape is not None:
dst_height, dst_width = shape
else:
dst_height, dst_width = self.shape
dst_data = self._create_dst_data(dst_height=dst_height, dst_width=dst_width)
dst_nodata = self._get_dst_nodata(nodata)
rasterio.warp.reproject(
source=self._obj.values,
destination=dst_data,
src_transform=src_affine,
src_crs=self.crs,
src_nodata=self.nodata,
dst_transform=dst_affine,
dst_crs=dst_crs,
dst_nodata=dst_nodata,
resampling=resampling,
**kwargs,
)
# add necessary attributes
new_attrs = _generate_attrs(src_data_array=self._obj, dst_nodata=dst_nodata)
# make sure dimensions with coordinates renamed to x,y
dst_dims: list[Hashable] = []
for dim in self._obj.dims:
if dim == self.x_dim:
dst_dims.append("x")
elif dim == self.y_dim:
dst_dims.append("y")
else:
dst_dims.append(dim)
xda = xarray.DataArray(
name=self._obj.name,
data=dst_data,
coords=_make_coords(
src_data_array=self._obj,
dst_affine=dst_affine,
dst_width=dst_width,
dst_height=dst_height,
force_generate=not use_affine,
),
dims=tuple(dst_dims),
attrs=new_attrs,
)
xda.encoding = self._obj.encoding
xda.rio.write_transform(dst_affine, inplace=True)
xda.rio.write_crs(dst_crs, inplace=True)
xda.rio.write_coordinate_system(inplace=True)
return xda
def _get_dst_nodata(self, nodata: Optional[float]) -> Optional[float]:
default_nodata = (
_NODATA_DTYPE_MAP.get(dtype_rev[self._obj.dtype.name])
if self.nodata is None
else self.nodata
)
dst_nodata = default_nodata if nodata is None else nodata
return dst_nodata
def _create_dst_data(self, *, dst_height: int, dst_width: int) -> numpy.ndarray:
extra_dim = self._check_dimensions()
if extra_dim:
dst_data = numpy.zeros(
(self._obj[extra_dim].size, dst_height, dst_width),
dtype=self._obj.dtype.type,
)
else:
dst_data = numpy.zeros((dst_height, dst_width), dtype=self._obj.dtype.type)
return dst_data
def reproject_match(
self,
match_data_array: Union[xarray.DataArray, xarray.Dataset],
*,
resampling: Resampling = Resampling.nearest,
**reproject_kwargs,
) -> xarray.DataArray:
"""
Reproject a DataArray object to match the resolution, projection,
and region of another DataArray.
Powered by :func:`rasterio.warp.reproject`
.. note:: Only 2D/3D arrays with dimensions 'x'/'y' are currently supported.
Requires either a grid mapping variable with 'spatial_ref' or
a 'crs' attribute to be set containing a valid CRS.
If using a WKT (e.g. from spatiareference.org), make sure it is an OGC WKT.
.. versionadded:: 0.9 reproject_kwargs
Parameters
----------
match_data_array: :obj:`xarray.DataArray` | :obj:`xarray.Dataset`
DataArray of the target resolution and projection.
resampling: rasterio.enums.Resampling, optional
See :func:`rasterio.warp.reproject` for more details.
**reproject_kwargs:
Other options to pass to :meth:`rioxarray.raster_array.RasterArray.reproject`
Returns
--------
:obj:`xarray.DataArray`:
Contains the data from the src_data_array, reprojected to match
match_data_array.
"""
reprojected_data_array = self.reproject(
match_data_array.rio.crs,
transform=match_data_array.rio.transform(recalc=True),
shape=match_data_array.rio.shape,
resampling=resampling,
**reproject_kwargs,
)
# hack to resolve: https://github.com/corteva/rioxarray/issues/298
# may be resolved in the future by flexible indexes:
# https://github.com/pydata/xarray/pull/4489#issuecomment-831809607
x_attrs = reprojected_data_array[reprojected_data_array.rio.x_dim].attrs.copy()
y_attrs = reprojected_data_array[reprojected_data_array.rio.y_dim].attrs.copy()
# ensure coords the same
reprojected_data_array = reprojected_data_array.assign_coords(
{
reprojected_data_array.rio.x_dim: copy.copy(
match_data_array[match_data_array.rio.x_dim].values
),
reprojected_data_array.rio.y_dim: copy.copy(
match_data_array[match_data_array.rio.y_dim].values
),
}
)
# ensure attributes copied
reprojected_data_array[reprojected_data_array.rio.x_dim].attrs = x_attrs
reprojected_data_array[reprojected_data_array.rio.y_dim].attrs = y_attrs
return reprojected_data_array
def pad_xy(
self,
minx: float,
miny: float,
maxx: float,
maxy: float,
*,
constant_values: Union[
float, tuple[int, int], Mapping[Any, tuple[int, int]], None
] = None,
) -> xarray.DataArray:
"""Pad the array to x,y bounds.
.. versionadded:: 0.0.29
Parameters
----------
minx: float
Minimum bound for x coordinate.
miny: float
Minimum bound for y coordinate.
maxx: float
Maximum bound for x coordinate.
maxy: float
Maximum bound for y coordinate.
constant_values: scalar, tuple or mapping of hashable to tuple
The value used for padding. If None, nodata will be used if it is
set, and numpy.nan otherwise.
Returns
-------
:obj:`xarray.DataArray`:
The padded object.
"""
# pylint: disable=too-many-locals
left, bottom, right, top = self._internal_bounds()
resolution_x, resolution_y = self.resolution()
y_before = y_after = 0
x_before = x_after = 0
y_coord: Union[xarray.DataArray, numpy.ndarray] = self._obj[self.y_dim]
x_coord: Union[xarray.DataArray, numpy.ndarray] = self._obj[self.x_dim]
if top - resolution_y < maxy:
new_y_coord: numpy.ndarray = numpy.arange(bottom, maxy, -resolution_y)[::-1]
y_before = len(new_y_coord) - len(y_coord)
y_coord = new_y_coord
top = y_coord[0]
if bottom + resolution_y > miny:
new_y_coord = numpy.arange(top, miny, resolution_y)
y_after = len(new_y_coord) - len(y_coord)
y_coord = new_y_coord
bottom = y_coord[-1]
if left - resolution_x > minx:
new_x_coord: numpy.ndarray = numpy.arange(right, minx, -resolution_x)[::-1]
x_before = len(new_x_coord) - len(x_coord)
x_coord = new_x_coord
left = x_coord[0]
if right + resolution_x < maxx:
new_x_coord = numpy.arange(left, maxx, resolution_x)
x_after = len(new_x_coord) - len(x_coord)
x_coord = new_x_coord
right = x_coord[-1]
if constant_values is None:
constant_values = numpy.nan if self.nodata is None else self.nodata
superset = self._obj.pad(
pad_width={
self.x_dim: (x_before, x_after),
self.y_dim: (y_before, y_after),
},
constant_values=constant_values, # type: ignore
).rio.set_spatial_dims(x_dim=self.x_dim, y_dim=self.y_dim, inplace=True)
superset[self.x_dim] = x_coord
superset[self.y_dim] = y_coord
superset.rio.write_transform(inplace=True)
return superset
def pad_box(
self,
minx: float,
miny: float,
maxx: float,
maxy: float,
*,
constant_values: Union[
float, tuple[int, int], Mapping[Any, tuple[int, int]], None
] = None,
) -> xarray.DataArray:
"""Pad the :obj:`xarray.DataArray` to a bounding box
.. versionadded:: 0.0.29
Parameters
----------
minx: float
Minimum bound for x coordinate.
miny: float
Minimum bound for y coordinate.
maxx: float
Maximum bound for x coordinate.
maxy: float
Maximum bound for y coordinate.
constant_values: scalar, tuple or mapping of hashable to tuple
The value used for padding. If None, nodata will be used if it is
set, and numpy.nan otherwise.
Returns
-------
:obj:`xarray.DataArray`:
The padded object.
"""
resolution_x, resolution_y = self.resolution()
pad_minx = minx - abs(resolution_x) / 2.0
pad_miny = miny - abs(resolution_y) / 2.0
pad_maxx = maxx + abs(resolution_x) / 2.0
pad_maxy = maxy + abs(resolution_y) / 2.0
pd_array = self.pad_xy(
minx=pad_minx,
miny=pad_miny,
maxx=pad_maxx,
maxy=pad_maxy,
constant_values=constant_values,
)
# make sure correct attributes preserved & projection added
_add_attrs_proj(new_data_array=pd_array, src_data_array=self._obj)
return pd_array
def clip_box(
self,
minx: float,
miny: float,
maxx: float,
maxy: float,
*,
auto_expand: Union[bool, int] = False,
auto_expand_limit: int = 3,
crs: Optional[Any] = None,
allow_one_dimensional_raster: bool = False,
) -> xarray.DataArray:
"""Clip the :obj:`xarray.DataArray` by a bounding box.
.. versionadded:: 0.12 crs
.. versionadded:: 0.16 allow_one_dimensional_raster
Parameters
----------
minx: float
Minimum bound for x coordinate.
miny: float
Minimum bound for y coordinate.
maxx: float
Maximum bound for x coordinate.
maxy: float
Maximum bound for y coordinate.
auto_expand: Union[bool, int]
If True, it will expand clip search if only 1D raster found with clip.
auto_expand_limit: int
maximum number of times the clip will be retried before raising
an exception.
crs: :obj:`rasterio.crs.CRS`, optional
The CRS of the bounding box. Default is to assume it is the same
as the dataset.
allow_one_dimensional_raster: bool, optional
If True, allow clipping to/from a one dimensional raster.
Returns
-------
xarray.DataArray:
The clipped object.
"""
if not allow_one_dimensional_raster and (self.width == 1 or self.height == 1):
raise OneDimensionalRaster(
"At least one of the raster x,y coordinates has only one point."
f"{_get_data_var_message(self._obj)}. "
"Set allow_one_dimensional_raster=True to disable this error."
)
if crs is not None and self.crs is None:
raise MissingCRS(
"CRS not found. Please set the CRS with 'rio.write_crs()'."
f"{_get_data_var_message(self._obj)}"
)
crs = crs_from_user_input(crs) if crs is not None else self.crs
if self.crs != crs:
minx, miny, maxx, maxy = rasterio.warp.transform_bounds(
src_crs=crs,
dst_crs=self.crs,
left=minx,
bottom=miny,
right=maxx,
top=maxy,
)
if (
self.crs is not None
and self.crs.is_geographic # pylint: disable=no-member
and minx > maxx
):
raise RioXarrayError(
"Transformed bounds crossed the antimeridian. "
"Please transform your bounds manually using "
"rasterio.warp.transform_bounds and clip using "
"the bounding box(es) desired."
)
resolution_x, resolution_y = self.resolution()
# make sure that if the coordinates are
# in reverse order that it still works
left, bottom, right, top = _order_bounds(
minx=minx,
miny=miny,
maxx=maxx,
maxy=maxy,
resolution_x=resolution_x,
resolution_y=resolution_y,
)
# pull the data out
window_error = None
try:
window = rasterio.windows.from_bounds(
left=numpy.array(left).item(),
bottom=numpy.array(bottom).item(),
right=numpy.array(right).item(),
top=numpy.array(top).item(),
transform=self.transform(recalc=True),
)
cl_array: xarray.DataArray = self.isel_window(window) # type: ignore
except rasterio.errors.WindowError as err:
window_error = err
# check that the window has data in it
if window_error or cl_array.rio.width <= 1 or cl_array.rio.height <= 1:
if auto_expand and auto_expand < auto_expand_limit:
return self.clip_box(
minx=minx - abs(resolution_x) / 2.0,
miny=miny - abs(resolution_y) / 2.0,
maxx=maxx + abs(resolution_x) / 2.0,
maxy=maxy + abs(resolution_y) / 2.0,
auto_expand=int(auto_expand) + 1,
auto_expand_limit=auto_expand_limit,
)
if window_error:
raise window_error
if cl_array.rio.width < 1 or cl_array.rio.height < 1:
raise NoDataInBounds(
f"No data found in bounds.{_get_data_var_message(self._obj)}"
)
if not allow_one_dimensional_raster and (
cl_array.rio.width == 1 or cl_array.rio.height == 1
):
raise OneDimensionalRaster(
"At least one of the clipped raster x,y coordinates"
" has only one point."
f"{_get_data_var_message(self._obj)}. "
"Set allow_one_dimensional_raster=True to disable this error."
)
# make sure correct attributes preserved & projection added
_add_attrs_proj(new_data_array=cl_array, src_data_array=self._obj)
return cl_array
def clip(
self,
geometries: Iterable,
crs: Optional[Any] = None,
*,
all_touched: bool = False,
drop: bool = True,
invert: bool = False,
from_disk: bool = False,
) -> xarray.DataArray:
"""
Crops a :obj:`xarray.DataArray` by geojson like geometry dicts.
Powered by `rasterio.features.geometry_mask`.
Examples:
>>> geometry = ''' {"type": "Polygon",
... "coordinates": [
... [[-94.07955380199459, 41.69085871273774],
... [-94.06082436942204, 41.69103313774798],
... [-94.06063203899649, 41.67932439500822],
... [-94.07935807746362, 41.679150041277325],
... [-94.07955380199459, 41.69085871273774]]]}'''
>>> cropping_geometries = [geojson.loads(geometry)]
>>> xds = xarray.open_rasterio('cool_raster.tif')
>>> cropped = xds.rio.clip(geometries=cropping_geometries, crs=4326)
.. versionadded:: 0.2 from_disk
Parameters
----------
geometries: Iterable
A list of geojson geometry dicts or objects with __geo_interface__ with
if you have rasterio 1.2+.
crs: :obj:`rasterio.crs.CRS`, optional
The CRS of the input geometries. Default is to assume it is the same
as the dataset.
all_touched : bool, optional
If True, all pixels touched by geometries will be burned in. If
false, only pixels whose center is within the polygon or that
are selected by Bresenham's line algorithm will be burned in.
drop: bool, optional
If True, drop the data outside of the extent of the mask geometries
Otherwise, it will return the same raster with the data masked.
Default is True.
invert: boolean, optional
If False, pixels that do not overlap shapes will be set as nodata.
Otherwise, pixels that overlap the shapes will be set as nodata.
False by default.
from_disk: boolean, optional
If True, it will clip from disk using rasterio.mask.mask if possible.
This is beneficial when the size of the data is larger than memory.
Default is False.
Returns
-------
:obj:`xarray.DataArray`:
The clipped object.
"""
if self.crs is None:
raise MissingCRS(
"CRS not found. Please set the CRS with 'rio.write_crs()'."
f"{_get_data_var_message(self._obj)}"
)
crs = crs_from_user_input(crs) if crs is not None else self.crs
if self.crs != crs:
geometries = rasterio.warp.transform_geom(crs, self.crs, geometries)
cropped_ds = None
if from_disk:
cropped_ds = _clip_from_disk(
self._obj,
geometries=geometries,
all_touched=all_touched,
drop=drop,
invert=invert,
)
if cropped_ds is None:
cropped_ds = _clip_xarray(
self._obj,
geometries=geometries,
all_touched=all_touched,
drop=drop,
invert=invert,
)
if (
cropped_ds.coords[self.x_dim].size < 1
or cropped_ds.coords[self.y_dim].size < 1
):
raise NoDataInBounds(
f"No data found in bounds.{_get_data_var_message(self._obj)}"
)
# make sure correct attributes preserved & projection added
_add_attrs_proj(new_data_array=cropped_ds, src_data_array=self._obj)
return cropped_ds
def _interpolate_na(
self,
src_data: Any,
*,
method: Literal["linear", "nearest", "cubic"] = "nearest",
) -> numpy.ndarray:
"""
This method uses scipy.interpolate.griddata to interpolate missing data.
Parameters
----------
src_data: Any
Input data array.
method: {'linear', 'nearest', 'cubic'}, optional
The method to use for interpolation in `scipy.interpolate.griddata`.
Returns
-------
:class:`numpy.ndarray`:
An interpolated :class:`numpy.ndarray`.
"""
try:
from scipy.interpolate import ( # pylint: disable=import-outside-toplevel,import-error
griddata,
)
except ModuleNotFoundError as err:
raise ModuleNotFoundError(
"scipy is not found. Use rioxarray[interp] to install."
) from err
src_data_flat = src_data.flatten()
try:
data_isnan = numpy.isnan(self.nodata) # type: ignore
except TypeError:
data_isnan = False
if not data_isnan:
data_bool = src_data_flat != self.nodata
else:
data_bool = ~numpy.isnan(src_data_flat)
if not data_bool.any():
return src_data
x_coords, y_coords = numpy.meshgrid(
self._obj.coords[self.x_dim].values, self._obj.coords[self.y_dim].values
)
return griddata(
points=(x_coords.flatten()[data_bool], y_coords.flatten()[data_bool]),
values=src_data_flat[data_bool],
xi=(x_coords, y_coords),
method=method,
fill_value=self.nodata,
)
def interpolate_na(
self, method: Literal["linear", "nearest", "cubic"] = "nearest"
) -> xarray.DataArray:
"""
This method uses scipy.interpolate.griddata to interpolate missing data.
.. warning:: scipy is an optional dependency.
Parameters
----------
method: {'linear', 'nearest', 'cubic'}, optional
The method to use for interpolation in `scipy.interpolate.griddata`.
Returns
-------
:obj:`xarray.DataArray`:
An interpolated :obj:`xarray.DataArray` object.
"""
if self.nodata is None:
raise RioXarrayError(
"nodata not found. Please set the nodata with 'rio.write_nodata()'."
f"{_get_data_var_message(self._obj)}"
)
extra_dim = self._check_dimensions()
if extra_dim:
interp_data = []
for _, sub_xds in self._obj.groupby(extra_dim):
interp_data.append(
self._interpolate_na(
sub_xds.squeeze(dim=extra_dim).values, method=method
)
)
interp_data = numpy.array(interp_data) # type: ignore
else:
interp_data = self._interpolate_na(self._obj.values, method=method) # type: ignore
interp_array = xarray.DataArray(
name=self._obj.name,
data=interp_data,
coords=self._obj.coords,
dims=self._obj.dims,
attrs=self._obj.attrs,
)
interp_array.encoding = self._obj.encoding
# make sure correct attributes preserved & projection added
_add_attrs_proj(new_data_array=interp_array, src_data_array=self._obj)
return interp_array
def to_raster(
self,
raster_path: Union[str, os.PathLike],
*,
driver: Optional[str] = None,
dtype: Optional[Union[str, numpy.dtype]] = None,
tags: Optional[dict[str, str]] = None,
windowed: bool = False,
recalc_transform: bool = True,
lock: Optional[bool] = None,
compute: bool = True,
**profile_kwargs,
) -> None:
"""
Export the DataArray to a raster file.
..versionadded:: 0.2 lock
Parameters
----------
raster_path: Union[str, os.PathLike]
The path to output the raster to.
driver: str, optional
The name of the GDAL/rasterio driver to use to export the raster.
Default is "GTiff" if rasterio < 1.2 otherwise it will autodetect.
dtype: str, optional
The data type to write the raster to. Default is the datasets dtype.
tags: dict, optional
A dictionary of tags to write to the raster.
windowed: bool, optional
If True, it will write using the windows of the output raster.
This is useful for loading data in chunks when writing. Does not
do anything when writing with dask.
Default is False.
recalc_transform: bool, optional
If False, it will write the raster with the cached transform from
the dataarray rather than recalculating it.
Default is True.
lock: boolean or Lock, optional
Lock to use to write data using dask.
If not supplied, it will use a single process for writing.
compute: bool, optional
If True and data is a dask array, then compute and save
the data immediately. If False, return a dask Delayed object.
Call ".compute()" on the Delayed object to compute the result
later. Call ``dask.compute(delayed1, delayed2)`` to save
multiple delayed files at once. Default is True.
**profile_kwargs
Additional keyword arguments to pass into writing the raster. The
nodata, transform, crs, count, width, and height attributes
are ignored.
Returns
-------
:obj:`dask.Delayed` | :obj:`dask.Array` | None:
If the data array is a dask array and compute
is True. Otherwise None is returned.
"""
if driver is None:
extension = Path(raster_path).suffix
# https://github.com/rasterio/rasterio/pull/2008
if extension in (".tif", ".tiff"):
driver = "GTiff"
# get the output profile from the rasterio object
# if opened with xarray.open_rasterio()
try:
out_profile = self._manager.acquire().profile # type: ignore
except AttributeError:
out_profile = {}
out_profile.update(profile_kwargs)
# filter out the generated attributes
out_profile = {
key: value
for key, value in out_profile.items()
if key
not in (
"driver",
"height",
"width",
"crs",
"transform",
"nodata",
"count",
"dtype",
)
}
rio_nodata = (
self.encoded_nodata if self.encoded_nodata is not None else self.nodata
)
return RasterioWriter(raster_path=raster_path).to_raster(
xarray_dataarray=self._obj,
tags=tags,
driver=driver,
height=int(self.height),
width=int(self.width),
count=int(self.count),
dtype=dtype,
crs=self.crs,
transform=self.transform(recalc=recalc_transform),
gcps=self.get_gcps(),
nodata=rio_nodata,
windowed=windowed,
lock=lock,
compute=compute,
**out_profile,
)
|