1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
|
"""
This module is an extension for xarray to provide rasterio capabilities
to xarray datasets.
"""
import os
from collections.abc import Iterable, Mapping
from typing import Any, Literal, Optional, Union
from uuid import uuid4
import numpy
import rasterio.crs
import xarray
from affine import Affine
from rasterio.enums import Resampling
from rioxarray._options import SKIP_MISSING_SPATIAL_DIMS, get_option
from rioxarray.exceptions import MissingSpatialDimensionError, RioXarrayError
from rioxarray.rioxarray import XRasterBase, _get_spatial_dims
@xarray.register_dataset_accessor("rio")
class RasterDataset(XRasterBase):
"""This is the GIS extension for :class:`xarray.Dataset`"""
@property
def vars(self) -> list:
"""list: Returns non-coordinate varibles"""
return list(self._obj.data_vars)
@property
def crs(self) -> Optional[rasterio.crs.CRS]:
""":obj:`rasterio.crs.CRS`:
Retrieve projection from `xarray.Dataset`
"""
if self._crs is not None:
return None if self._crs is False else self._crs
self._crs = super().crs
if self._crs is not None:
return self._crs
# ensure all the CRS of the variables are the same
crs_list = []
for var in self.vars:
if self._obj[var].rio.crs is not None:
crs_list.append(self._obj[var].rio.crs)
try:
crs = crs_list[0]
except IndexError:
crs = None
if crs is None:
self._crs = False
return None
if all(crs_i == crs for crs_i in crs_list):
self._crs = crs
else:
raise RioXarrayError(f"CRS in DataArrays differ in the Dataset: {crs_list}")
return self._crs
def reproject(
self,
dst_crs: Any,
*,
resolution: Optional[Union[float, tuple[float, float]]] = None,
shape: Optional[tuple[int, int]] = None,
transform: Optional[Affine] = None,
resampling: Resampling = Resampling.nearest,
nodata: Optional[float] = None,
**kwargs,
) -> xarray.Dataset:
"""
Reproject :class:`xarray.Dataset` objects
.. note:: Only 2D/3D arrays with dimensions 'x'/'y' are currently supported.
Others are appended as is.
Requires either a grid mapping variable with 'spatial_ref' or
a 'crs' attribute to be set containing a valid CRS.
If using a WKT (e.g. from spatiareference.org), make sure it is an OGC WKT.
.. note:: To re-project with dask, see
`odc-geo <https://odc-geo.readthedocs.io/>`__ &
`pyresample <https://pyresample.readthedocs.io/>`__.
.. versionadded:: 0.0.27 shape
.. versionadded:: 0.0.28 transform
.. versionadded:: 0.5.0 nodata, kwargs
Parameters
----------
dst_crs: str
OGC WKT string or Proj.4 string.
resolution: float or tuple(float, float), optional
Size of a destination pixel in destination projection units
(e.g. degrees or metres).
shape: tuple(int, int), optional
Shape of the destination in pixels (dst_height, dst_width). Cannot be used
together with resolution.
transform: Affine, optional
The destination transform.
resampling: rasterio.enums.Resampling, optional
See :func:`rasterio.warp.reproject` for more details.
nodata: float, optional
The nodata value used to initialize the destination;
it will remain in all areas not covered by the reprojected source.
Defaults to the nodata value of the source image if none provided
and exists or attempts to find an appropriate value by dtype.
**kwargs: dict
Additional keyword arguments to pass into :func:`rasterio.warp.reproject`.
To override:
- src_transform: `rio.write_transform`
- src_crs: `rio.write_crs`
- src_nodata: `rio.write_nodata`
Returns
--------
:class:`xarray.Dataset`:
The reprojected Dataset.
"""
resampled_dataset = xarray.Dataset(attrs=self._obj.attrs)
for var in self.vars:
try:
x_dim, y_dim = _get_spatial_dims(self._obj, var=var)
resampled_dataset[var] = (
self._obj[var]
.rio.set_spatial_dims(x_dim=x_dim, y_dim=y_dim, inplace=True)
.rio.reproject(
dst_crs,
resolution=resolution,
shape=shape,
transform=transform,
resampling=resampling,
nodata=nodata,
**kwargs,
)
)
except MissingSpatialDimensionError:
if len(self._obj[var].dims) >= 2 and not get_option(
SKIP_MISSING_SPATIAL_DIMS
):
raise
resampled_dataset[var] = self._obj[var].copy()
return resampled_dataset
def reproject_match(
self,
match_data_array: Union[xarray.DataArray, xarray.Dataset],
*,
resampling: Resampling = Resampling.nearest,
**reproject_kwargs,
) -> xarray.Dataset:
"""
Reproject a Dataset object to match the resolution, projection,
and region of another DataArray.
.. note:: Only 2D/3D arrays with dimensions 'x'/'y' are currently supported.
Others are appended as is.
Requires either a grid mapping variable with 'spatial_ref' or
a 'crs' attribute to be set containing a valid CRS.
If using a WKT (e.g. from spatiareference.org), make sure it is an OGC WKT.
.. versionadded:: 0.9 reproject_kwargs
Parameters
----------
match_data_array: :obj:`xarray.DataArray` | :obj:`xarray.Dataset`
Dataset with the target resolution and projection.
resampling: rasterio.enums.Resampling, optional
See :func:`rasterio.warp.reproject` for more details.
**reproject_kwargs:
Other options to pass to :meth:`rioxarray.raster_dataset.RasterDataset.reproject`
Returns
--------
:obj:`xarray.Dataset`:
Contains the data from the src_data_array,
reprojected to match match_data_array.
"""
resampled_dataset = xarray.Dataset(attrs=self._obj.attrs)
for var in self.vars:
try:
x_dim, y_dim = _get_spatial_dims(self._obj, var=var)
resampled_dataset[var] = (
self._obj[var]
.rio.set_spatial_dims(x_dim=x_dim, y_dim=y_dim, inplace=True)
.rio.reproject_match(
match_data_array, resampling=resampling, **reproject_kwargs
)
)
except MissingSpatialDimensionError:
if len(self._obj[var].dims) >= 2 and not get_option(
SKIP_MISSING_SPATIAL_DIMS
):
raise
resampled_dataset[var] = self._obj[var].copy()
return resampled_dataset
def pad_box(
self,
minx: float,
miny: float,
maxx: float,
maxy: float,
*,
constant_values: Union[
float, tuple[int, int], Mapping[Any, tuple[int, int]], None
] = None,
) -> xarray.Dataset:
"""Pad the :class:`xarray.Dataset` to a bounding box.
.. warning:: Only works if all variables in the dataset have the
same coordinates.
.. warning:: Pads variables that have dimensions 'x'/'y'. Others are appended as is.
Parameters
----------
minx: float
Minimum bound for x coordinate.
miny: float
Minimum bound for y coordinate.
maxx: float
Maximum bound for x coordinate.
maxy: float
Maximum bound for y coordinate.
constant_values: scalar, tuple or mapping of hashable to tuple
The value used for padding. If None, nodata will be used if it is
set, and numpy.nan otherwise.
Returns
-------
:obj:`xarray.Dataset`:
The padded object.
"""
padded_dataset = xarray.Dataset(attrs=self._obj.attrs)
for var in self.vars:
try:
x_dim, y_dim = _get_spatial_dims(self._obj, var=var)
padded_dataset[var] = (
self._obj[var]
.rio.set_spatial_dims(x_dim=x_dim, y_dim=y_dim, inplace=True)
.rio.pad_box(
minx, miny, maxx, maxy, constant_values=constant_values
)
)
except MissingSpatialDimensionError:
if len(self._obj[var].dims) >= 2 and not get_option(
SKIP_MISSING_SPATIAL_DIMS
):
raise
padded_dataset[var] = self._obj[var].copy()
return padded_dataset.rio.set_spatial_dims(
x_dim=self.x_dim, y_dim=self.y_dim, inplace=True
)
def clip_box(
self,
minx: float,
miny: float,
maxx: float,
maxy: float,
*,
auto_expand: Union[bool, int] = False,
auto_expand_limit: int = 3,
crs: Optional[Any] = None,
allow_one_dimensional_raster: bool = False,
) -> xarray.Dataset:
"""Clip the :class:`xarray.Dataset` by a bounding box in dimensions 'x'/'y'.
.. warning:: Clips variables that have dimensions 'x'/'y'. Others are appended as is.
.. versionadded:: 0.12 crs
.. versionadded:: 0.16 allow_one_dimensional_raster
Parameters
----------
minx: float
Minimum bound for x coordinate.
miny: float
Minimum bound for y coordinate.
maxx: float
Maximum bound for x coordinate.
maxy: float
Maximum bound for y coordinate.
auto_expand: bool
If True, it will expand clip search if only 1D raster found with clip.
auto_expand_limit: int
maximum number of times the clip will be retried before raising
an exception.
crs: :obj:`rasterio.crs.CRS`, optional
The CRS of the bounding box. Default is to assume it is the same
as the dataset.
allow_one_dimensional_raster: bool, optional
If True, allow clipping to/from a one dimensional raster.
Returns
-------
Dataset:
The clipped object.
"""
clipped_dataset = xarray.Dataset(attrs=self._obj.attrs)
for var in self.vars:
try:
x_dim, y_dim = _get_spatial_dims(self._obj, var=var)
clipped_dataset[var] = (
self._obj[var]
.rio.set_spatial_dims(x_dim=x_dim, y_dim=y_dim, inplace=True)
.rio.clip_box(
minx,
miny,
maxx,
maxy,
auto_expand=auto_expand,
auto_expand_limit=auto_expand_limit,
crs=crs,
allow_one_dimensional_raster=allow_one_dimensional_raster,
)
)
except MissingSpatialDimensionError:
if len(self._obj[var].dims) >= 2 and not get_option(
SKIP_MISSING_SPATIAL_DIMS
):
raise
clipped_dataset[var] = self._obj[var].copy()
return clipped_dataset.rio.set_spatial_dims(
x_dim=self.x_dim, y_dim=self.y_dim, inplace=True
)
def clip(
self,
geometries: Iterable,
crs: Optional[Any] = None,
*,
all_touched: bool = False,
drop: bool = True,
invert: bool = False,
from_disk: bool = False,
) -> xarray.Dataset:
"""
Crops a :class:`xarray.Dataset` by geojson like geometry dicts in dimensions 'x'/'y'.
.. warning:: Clips variables that have dimensions 'x'/'y'. Others are appended as is.
Powered by `rasterio.features.geometry_mask`.
Examples:
>>> geometry = ''' {"type": "Polygon",
... "coordinates": [
... [[-94.07955380199459, 41.69085871273774],
... [-94.06082436942204, 41.69103313774798],
... [-94.06063203899649, 41.67932439500822],
... [-94.07935807746362, 41.679150041277325],
... [-94.07955380199459, 41.69085871273774]]]}'''
>>> cropping_geometries = [geojson.loads(geometry)]
>>> xds = xarray.open_rasterio('cool_raster.tif')
>>> cropped = xds.rio.clip(geometries=cropping_geometries, crs=4326)
.. versionadded:: 0.2 from_disk
Parameters
----------
geometries: list
A list of geojson geometry dicts.
crs: :obj:`rasterio.crs.CRS`, optional
The CRS of the input geometries. Default is to assume it is the same
as the dataset.
all_touched : boolean, optional
If True, all pixels touched by geometries will be burned in. If
false, only pixels whose center is within the polygon or that
are selected by Bresenham's line algorithm will be burned in.
drop: bool, optional
If True, drop the data outside of the extent of the mask geometries
Otherwise, it will return the same raster with the data masked.
Default is True.
invert: boolean, optional
If False, pixels that do not overlap shapes will be set as nodata.
Otherwise, pixels that overlap the shapes will be set as nodata.
False by default.
from_disk: boolean, optional
If True, it will clip from disk using rasterio.mask.mask if possible.
This is beneficial when the size of the data is larger than memory.
Default is False.
Returns
-------
:obj:`xarray.Dataset`:
The clipped object.
"""
clipped_dataset = xarray.Dataset(attrs=self._obj.attrs)
for var in self.vars:
try:
x_dim, y_dim = _get_spatial_dims(self._obj, var=var)
clipped_dataset[var] = (
self._obj[var]
.rio.set_spatial_dims(x_dim=x_dim, y_dim=y_dim, inplace=True)
.rio.clip(
geometries,
crs=crs,
all_touched=all_touched,
drop=drop,
invert=invert,
from_disk=from_disk,
)
)
except MissingSpatialDimensionError:
if len(self._obj[var].dims) >= 2 and not get_option(
SKIP_MISSING_SPATIAL_DIMS
):
raise
clipped_dataset[var] = self._obj[var].copy()
return clipped_dataset.rio.set_spatial_dims(
x_dim=self.x_dim, y_dim=self.y_dim, inplace=True
)
def interpolate_na(
self, method: Literal["linear", "nearest", "cubic"] = "nearest"
) -> xarray.Dataset:
"""
This method uses `scipy.interpolate.griddata` to interpolate missing data.
.. warning:: scipy is an optional dependency.
.. warning:: Interpolates variables that have dimensions 'x'/'y'. Others are appended as is.
Parameters
----------
method: {'linear', 'nearest', 'cubic'}, optional
The method to use for interpolation in `scipy.interpolate.griddata`.
Returns
-------
:obj:`xarray.DataArray`:
The interpolated object.
"""
interpolated_dataset = xarray.Dataset(attrs=self._obj.attrs)
for var in self.vars:
try:
x_dim, y_dim = _get_spatial_dims(self._obj, var=var)
interpolated_dataset[var] = (
self._obj[var]
.rio.set_spatial_dims(x_dim=x_dim, y_dim=y_dim, inplace=True)
.rio.interpolate_na(method=method)
)
except MissingSpatialDimensionError:
if len(self._obj[var].dims) >= 2 and not get_option(
SKIP_MISSING_SPATIAL_DIMS
):
raise
interpolated_dataset[var] = self._obj[var].copy()
return interpolated_dataset.rio.set_spatial_dims(
x_dim=self.x_dim, y_dim=self.y_dim, inplace=True
)
def to_raster(
self,
raster_path: Union[str, os.PathLike],
*,
driver: Optional[str] = None,
dtype: Optional[Union[str, numpy.dtype]] = None,
tags: Optional[dict[str, str]] = None,
windowed: bool = False,
recalc_transform: bool = True,
lock: Optional[bool] = None,
compute: bool = True,
**profile_kwargs,
) -> None:
"""
Export the Dataset to a raster file. Only works with 2D data.
..versionadded:: 0.2 lock
Parameters
----------
raster_path: str
The path to output the raster to.
driver: str, optional
The name of the GDAL/rasterio driver to use to export the raster.
Default is "GTiff" if rasterio < 1.2 otherwise it will autodetect.
dtype: str, optional
The data type to write the raster to. Default is the datasets dtype.
tags: dict, optional
A dictionary of tags to write to the raster.
windowed: bool, optional
If True, it will write using the windows of the output raster.
This is useful for loading data in chunks when writing. Does not
do anything when writing with dask.
Default is False.
recalc_transform: bool, optional
If False, it will write the raster with the cached transform from
the dataset rather than recalculating it.
Default is True.
lock: boolean or Lock, optional
Lock to use to write data using dask.
If not supplied, it will use a single process for writing.
compute: bool, optional
If True and data is a dask array, then compute and save
the data immediately. If False, return a dask Delayed object.
Call ".compute()" on the Delayed object to compute the result
later. Call ``dask.compute(delayed1, delayed2)`` to save
multiple delayed files at once. Default is True.
**profile_kwargs
Additional keyword arguments to pass into writing the raster. The
nodata, transform, crs, count, width, and height attributes
are ignored.
Returns
-------
:obj:`dask.Delayed` | :obj:`dask.Array` | None:
If the data array is a dask array and compute
is True. Otherwise None is returned.
"""
# pylint: disable=too-many-locals
variable_dim = f"band_{uuid4()}"
data_array = self._obj.to_array(dim=variable_dim)
# ensure raster metadata preserved
attr_scales = []
attr_offsets = []
attr_nodatavals = []
encoded_scales = []
encoded_offsets = []
encoded_nodatavals = []
band_tags = []
long_name = []
for data_var in data_array[variable_dim].values:
try:
encoded_scales.append(self._obj[data_var].encoding["scale_factor"])
except KeyError:
attr_scales.append(self._obj[data_var].attrs.get("scale_factor", 1.0))
try:
encoded_offsets.append(self._obj[data_var].encoding["add_offset"])
except KeyError:
attr_offsets.append(self._obj[data_var].attrs.get("add_offset", 0.0))
long_name.append(self._obj[data_var].attrs.get("long_name", data_var))
if self._obj[data_var].rio.encoded_nodata is not None:
encoded_nodatavals.append(self._obj[data_var].rio.encoded_nodata)
else:
attr_nodatavals.append(self._obj[data_var].rio.nodata)
band_tags.append(self._obj[data_var].attrs.copy())
if encoded_scales:
data_array.encoding["scales"] = encoded_scales
else:
data_array.attrs["scales"] = attr_scales
if encoded_offsets:
data_array.encoding["offsets"] = encoded_offsets
else:
data_array.attrs["offsets"] = attr_offsets
data_array.attrs["band_tags"] = band_tags
data_array.attrs["long_name"] = long_name
use_encoded_nodatavals = bool(encoded_nodatavals)
nodatavals = encoded_nodatavals if use_encoded_nodatavals else attr_nodatavals
nodata = nodatavals[0]
if (
all(nodataval == nodata for nodataval in nodatavals)
or numpy.isnan(nodatavals).all()
):
data_array.rio.write_nodata(
nodata, inplace=True, encoded=use_encoded_nodatavals
)
else:
raise RioXarrayError(
"All nodata values must be the same when exporting to raster. "
f"Current values: {attr_nodatavals}"
)
if self.crs is not None:
data_array.rio.write_crs(self.crs, inplace=True)
# write it to a raster
return data_array.rio.set_spatial_dims(
x_dim=self.x_dim,
y_dim=self.y_dim,
inplace=True,
).rio.to_raster(
raster_path=raster_path,
driver=driver,
dtype=dtype,
tags=tags,
windowed=windowed,
recalc_transform=recalc_transform,
lock=lock,
compute=compute,
**profile_kwargs,
)
|