File: rioxarray.py

package info (click to toggle)
python-rioxarray 0.19.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,304 kB
  • sloc: python: 7,893; makefile: 93
file content (1369 lines) | stat: -rw-r--r-- 47,325 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
"""
This module is an extension for xarray to provide rasterio capabilities
to xarray datasets/dataarrays.
"""

# pylint: disable=too-many-lines
import json
import math
import warnings
from collections.abc import Hashable, Iterable
from typing import Any, Literal, Optional, Union

import numpy
import pyproj
import rasterio.warp
import rasterio.windows
import xarray
from affine import Affine
from pyproj.aoi import AreaOfInterest
from pyproj.database import query_utm_crs_info
from rasterio.control import GroundControlPoint
from rasterio.crs import CRS

from rioxarray._options import EXPORT_GRID_MAPPING, get_option
from rioxarray.crs import crs_from_user_input
from rioxarray.exceptions import (
    DimensionError,
    DimensionMissingCoordinateError,
    InvalidDimensionOrder,
    MissingCRS,
    MissingSpatialDimensionError,
    NoDataInBounds,
    OneDimensionalRaster,
    RioXarrayError,
    TooManyDimensions,
)

DEFAULT_GRID_MAP = "spatial_ref"


def _affine_has_rotation(affine: Affine) -> bool:
    """
    Determine if the affine has rotation.

    Parameters
    ----------
    affine: :obj:`affine.Affine`
        The affine of the grid.

    Returns
    -------
    bool
    """
    return affine.b == affine.d != 0


def _resolution(affine: Affine) -> tuple[float, float]:
    """
    Determine if the resolution of the affine.
    If it has rotation, the sign of the resolution is lost.

    Based on: https://github.com/mapbox/rasterio/blob/6185a4e4ad72b5669066d2d5004bf46d94a6d298/rasterio/_base.pyx#L943-L951

    Parameters
    ----------
    affine: :obj:`affine.Affine`
        The affine of the grid.


    Returns
    --------
    x_resolution: float
        The X resolution of the affine.
    y_resolution: float
        The Y resolution of the affine.
    """
    if not _affine_has_rotation(affine):
        return affine.a, affine.e
    return (
        math.sqrt(affine.a**2 + affine.d**2),
        math.sqrt(affine.b**2 + affine.e**2),
    )


def affine_to_coords(
    affine: Affine, width: int, height: int, *, x_dim: str = "x", y_dim: str = "y"
) -> dict[str, numpy.ndarray]:
    """Generate 1d pixel centered coordinates from affine.

    Based on code from the xarray rasterio backend.

    Parameters
    ----------
    affine: :obj:`affine.Affine`
        The affine of the grid.
    width: int
        The width of the grid.
    height: int
        The height of the grid.
    x_dim: str, optional
        The name of the X dimension. Default is 'x'.
    y_dim: str, optional
        The name of the Y dimension. Default is 'y'.

    Returns
    -------
    dict: x and y coordinate arrays.

    """
    transform = affine * affine.translation(0.5, 0.5)
    if affine.is_rectilinear and not _affine_has_rotation(affine):
        x_coords, _ = transform * (numpy.arange(width), numpy.zeros(width))
        _, y_coords = transform * (numpy.zeros(height), numpy.arange(height))
    else:
        x_coords, y_coords = transform * numpy.meshgrid(
            numpy.arange(width),
            numpy.arange(height),
        )
    return {y_dim: y_coords, x_dim: x_coords}


def _generate_spatial_coords(
    *, affine: Affine, width: int, height: int
) -> dict[Hashable, Any]:
    """get spatial coords in new transform"""
    new_spatial_coords = affine_to_coords(affine, width, height)
    if new_spatial_coords["x"].ndim == 1:
        return {
            "x": xarray.IndexVariable("x", new_spatial_coords["x"]),
            "y": xarray.IndexVariable("y", new_spatial_coords["y"]),
        }
    return {
        "xc": (("y", "x"), new_spatial_coords["x"]),
        "yc": (("y", "x"), new_spatial_coords["y"]),
    }


def _get_nonspatial_coords(
    src_data_array: Union[xarray.DataArray, xarray.Dataset]
) -> dict[Hashable, Union[xarray.Variable, xarray.IndexVariable]]:
    coords: dict[Hashable, Union[xarray.Variable, xarray.IndexVariable]] = {}
    for coord in set(src_data_array.coords) - {
        src_data_array.rio.x_dim,
        src_data_array.rio.y_dim,
        DEFAULT_GRID_MAP,
    }:
        # skip 2D spatial coords
        if (
            src_data_array.rio.x_dim in src_data_array[coord].dims
            and src_data_array.rio.y_dim in src_data_array[coord].dims
        ):
            continue
        if src_data_array[coord].ndim == 1:
            coords[coord] = xarray.IndexVariable(
                src_data_array[coord].dims,
                src_data_array[coord].values,
                src_data_array[coord].attrs,
            )
        else:
            coords[coord] = xarray.Variable(
                src_data_array[coord].dims,
                src_data_array[coord].values,
                src_data_array[coord].attrs,
            )
    return coords


def _make_coords(
    *,
    src_data_array: Union[xarray.DataArray, xarray.Dataset],
    dst_affine: Affine,
    dst_width: int,
    dst_height: int,
    force_generate: bool = False,
) -> dict[Hashable, Any]:
    """Generate the coordinates of the new projected `xarray.DataArray`"""
    coords = _get_nonspatial_coords(src_data_array)
    if (
        force_generate
        or (
            src_data_array.rio.x_dim in src_data_array.coords
            and src_data_array.rio.y_dim in src_data_array.coords
        )
        or ("xc" in src_data_array.coords and "yc" in src_data_array.coords)
    ):
        new_coords = _generate_spatial_coords(
            affine=dst_affine, width=dst_width, height=dst_height
        )
        new_coords.update(coords)
        return new_coords
    return coords


def _get_data_var_message(obj: Union[xarray.DataArray, xarray.Dataset]) -> str:
    """
    Get message for named data variables.
    """
    try:
        return f" Data variable: {obj.name}" if obj.name else ""
    except AttributeError:
        return ""


def _get_spatial_dims(
    obj: Union[xarray.Dataset, xarray.DataArray], *, var: Union[Any, Hashable]
) -> tuple[str, str]:
    """
    Retrieve the spatial dimensions of the dataset
    """
    try:
        return obj[var].rio.x_dim, obj[var].rio.y_dim
    except MissingSpatialDimensionError as err:
        try:
            obj[var].rio.set_spatial_dims(
                x_dim=obj.rio.x_dim, y_dim=obj.rio.y_dim, inplace=True
            )
            return obj.rio.x_dim, obj.rio.y_dim
        except MissingSpatialDimensionError:
            raise err from None


def _has_spatial_dims(
    obj: Union[xarray.Dataset, xarray.DataArray], *, var: Union[Any, Hashable]
) -> bool:
    """
    Check to see if the variable in the Dataset has spatial dimensions
    """
    try:
        # pylint: disable=pointless-statement
        _get_spatial_dims(obj, var=var)
    except MissingSpatialDimensionError:
        return False
    return True


def _order_bounds(
    *,
    minx: float,
    miny: float,
    maxx: float,
    maxy: float,
    resolution_x: float,
    resolution_y: float,
) -> tuple[float, float, float, float]:
    """
    Make sure that the bounds are in the correct order
    """
    if resolution_y < 0:
        top = maxy
        bottom = miny
    else:
        top = miny
        bottom = maxy
    if resolution_x < 0:
        left = maxx
        right = minx
    else:
        left = minx
        right = maxx

    return left, bottom, right, top


class XRasterBase:
    """This is the base class for the GIS extensions for xarray"""

    # pylint: disable=too-many-instance-attributes
    def __init__(self, xarray_obj: Union[xarray.DataArray, xarray.Dataset]):
        self._obj: Union[xarray.DataArray, xarray.Dataset] = xarray_obj

        self._x_dim: Optional[Hashable] = None
        self._y_dim: Optional[Hashable] = None
        # Determine the spatial dimensions of the `xarray.DataArray`
        if "x" in self._obj.dims and "y" in self._obj.dims:
            self._x_dim = "x"
            self._y_dim = "y"
        elif "longitude" in self._obj.dims and "latitude" in self._obj.dims:
            self._x_dim = "longitude"
            self._y_dim = "latitude"
        else:
            # look for coordinates with CF attributes
            for coord in self._obj.coords:
                # make sure to only look in 1D coordinates
                # that has the same dimension name as the coordinate
                if self._obj.coords[coord].dims != (coord,):
                    continue
                if (self._obj.coords[coord].attrs.get("axis", "").upper() == "X") or (
                    self._obj.coords[coord].attrs.get("standard_name", "").lower()
                    in ("longitude", "projection_x_coordinate")
                ):
                    self._x_dim = coord
                elif (self._obj.coords[coord].attrs.get("axis", "").upper() == "Y") or (
                    self._obj.coords[coord].attrs.get("standard_name", "").lower()
                    in ("latitude", "projection_y_coordinate")
                ):
                    self._y_dim = coord

        # properties
        self._count: Optional[int] = None
        self._height: Optional[int] = None
        self._width: Optional[int] = None
        self._crs: Union[rasterio.crs.CRS, None, Literal[False]] = None
        self._gcps: Optional[list[GroundControlPoint]] = None

    @property
    def crs(self) -> Optional[rasterio.crs.CRS]:
        """:obj:`rasterio.crs.CRS`:
        Retrieve projection from :obj:`xarray.Dataset` | :obj:`xarray.DataArray`
        """
        if self._crs is not None:
            return None if self._crs is False else self._crs

        # look in wkt attributes to avoid using
        # pyproj CRS if possible for performance
        for crs_attr in ("spatial_ref", "crs_wkt"):
            try:
                self._set_crs(
                    self._obj.coords[self.grid_mapping].attrs[crs_attr],
                    inplace=True,
                )
                return self._crs
            except KeyError:
                pass

        # look in grid_mapping
        try:
            self._set_crs(
                pyproj.CRS.from_cf(self._obj.coords[self.grid_mapping].attrs),
                inplace=True,
            )
        except (KeyError, pyproj.exceptions.CRSError):
            try:
                # look in attrs for 'crs'
                self._set_crs(self._obj.attrs["crs"], inplace=True)
            except KeyError:
                self._crs = False
                return None
        return self._crs

    def _get_obj(self, inplace: bool) -> Union[xarray.Dataset, xarray.DataArray]:
        """
        Get the object to modify.

        Parameters
        ----------
        inplace: bool
            If True, returns self.

        Returns
        -------
        :obj:`xarray.Dataset` | :obj:`xarray.DataArray`
        """
        if inplace:
            return self._obj
        obj_copy = self._obj.copy(deep=True)
        # preserve attribute information
        obj_copy.rio._x_dim = self._x_dim
        obj_copy.rio._y_dim = self._y_dim
        obj_copy.rio._width = self._width
        obj_copy.rio._height = self._height
        obj_copy.rio._crs = self._crs
        obj_copy.rio._gcps = self._gcps
        return obj_copy

    def set_crs(
        self, input_crs: Any, inplace: bool = True
    ) -> Union[xarray.Dataset, xarray.DataArray]:
        """
        Set the CRS value for the Dataset/DataArray without modifying
        the dataset/data array.

        .. deprecated:: 0.15.8
            It is recommended to use `rio.write_crs()` instead. This
        method will likely be removed in a future release.

        Parameters
        ----------
        input_crs: object
            Anything accepted by `rasterio.crs.CRS.from_user_input`.
        inplace: bool, optional
            If True, it will write to the existing dataset. Default is False.

        Returns
        -------
        :obj:`xarray.Dataset` | :obj:`xarray.DataArray`:
            Dataset with crs attribute.
        """
        warnings.warn(
            "It is recommended to use 'rio.write_crs()' instead. 'rio.set_crs()' will likely"
            "be removed in a future release.",
            FutureWarning,
            stacklevel=2,
        )

        return self._set_crs(input_crs, inplace=inplace)

    def _set_crs(
        self, input_crs: Any, inplace: bool = True
    ) -> Union[xarray.Dataset, xarray.DataArray]:
        """
        Set the CRS value for the Dataset/DataArray without modifying
        the dataset/data array.

        Parameters
        ----------
        input_crs: object
            Anything accepted by `rasterio.crs.CRS.from_user_input`.
        inplace: bool, optional
            If True, it will write to the existing dataset. Default is False.

        Returns
        -------
        xarray.Dataset | xarray.DataArray
            Dataset with crs attribute.
        """
        crs = crs_from_user_input(input_crs)
        obj = self._get_obj(inplace=inplace)
        obj.rio._crs = crs
        return obj

    @property
    def grid_mapping(self) -> str:
        """
        str: The CF grid_mapping attribute. 'spatial_ref' is the default.
        """
        grid_mapping = self._obj.encoding.get(
            "grid_mapping", self._obj.attrs.get("grid_mapping")
        )
        if grid_mapping is not None:
            return grid_mapping
        grid_mapping = DEFAULT_GRID_MAP
        # search the dataset for the grid mapping name
        if hasattr(self._obj, "data_vars"):
            grid_mappings = set()
            for var in self._obj.data_vars:
                if not _has_spatial_dims(self._obj, var=var):
                    continue
                var_grid_mapping = self._obj[var].encoding.get(
                    "grid_mapping", self._obj[var].attrs.get("grid_mapping")
                )
                if var_grid_mapping is not None:
                    grid_mapping = var_grid_mapping
                    grid_mappings.add(grid_mapping)
            if len(grid_mappings) > 1:
                raise RioXarrayError("Multiple grid mappings exist.")
        return grid_mapping

    def write_grid_mapping(
        self, grid_mapping_name: str = DEFAULT_GRID_MAP, inplace: bool = False
    ) -> Union[xarray.Dataset, xarray.DataArray]:
        """
        Write the CF grid_mapping attribute to the encoding.

        Parameters
        ----------
        grid_mapping_name: str, optional
            Name of the grid_mapping coordinate.
        inplace: bool, optional
            If True, it will write to the existing dataset. Default is False.

        Returns
        -------
        :obj:`xarray.Dataset` | :obj:`xarray.DataArray`:
            Modified dataset with CF compliant CRS information.
        """
        data_obj = self._get_obj(inplace=inplace)
        if hasattr(data_obj, "data_vars"):
            for var in data_obj.data_vars:
                try:
                    x_dim, y_dim = _get_spatial_dims(data_obj, var=var)
                except MissingSpatialDimensionError:
                    continue
                # remove grid_mapping from attributes if it exists
                # and update the grid_mapping in encoding
                new_attrs = dict(data_obj[var].attrs)
                new_attrs.pop("grid_mapping", None)
                data_obj[var].rio.update_encoding(
                    {"grid_mapping": grid_mapping_name}, inplace=True
                ).rio.set_attrs(new_attrs, inplace=True).rio.set_spatial_dims(
                    x_dim=x_dim, y_dim=y_dim, inplace=True
                )
        # remove grid_mapping from attributes if it exists
        # and update the grid_mapping in encoding
        new_attrs = dict(data_obj.attrs)
        new_attrs.pop("grid_mapping", None)
        return data_obj.rio.update_encoding(
            {"grid_mapping": grid_mapping_name}, inplace=True
        ).rio.set_attrs(new_attrs, inplace=True)

    def write_crs(
        self,
        input_crs: Optional[Any] = None,
        grid_mapping_name: Optional[str] = None,
        inplace: bool = False,
    ) -> Union[xarray.Dataset, xarray.DataArray]:
        """
        Write the CRS to the dataset in a CF compliant manner.

        .. warning:: The grid_mapping attribute is written to the encoding.

        Parameters
        ----------
        input_crs: Any
            Anything accepted by `rasterio.crs.CRS.from_user_input`.
        grid_mapping_name: str, optional
            Name of the grid_mapping coordinate to store the CRS information in.
            Default is the grid_mapping name of the dataset.
        inplace: bool, optional
            If True, it will write to the existing dataset. Default is False.

        Returns
        -------
        :obj:`xarray.Dataset` | :obj:`xarray.DataArray`:
            Modified dataset with CF compliant CRS information.

        Examples
        --------
        Write the CRS of the current `xarray` object:

        >>> raster.rio.write_crs("epsg:4326", inplace=True)

        Write the CRS on a copy:

        >>> raster = raster.rio.write_crs("epsg:4326")
        """
        if input_crs is not None:
            data_obj = self._set_crs(input_crs, inplace=inplace)
        else:
            data_obj = self._get_obj(inplace=inplace)

        # get original transform
        transform = self._cached_transform()
        # remove old grid maping coordinate if exists
        grid_mapping_name = (
            self.grid_mapping if grid_mapping_name is None else grid_mapping_name
        )
        try:
            del data_obj.coords[grid_mapping_name]
        except KeyError:
            pass

        if data_obj.rio.crs is None:
            raise MissingCRS(
                "CRS not found. Please set the CRS with 'rio.write_crs()'."
            )
        # add grid mapping coordinate
        data_obj.coords[grid_mapping_name] = xarray.Variable((), 0)
        grid_map_attrs = {}
        if get_option(EXPORT_GRID_MAPPING):
            try:
                grid_map_attrs = pyproj.CRS.from_user_input(data_obj.rio.crs).to_cf()
            except KeyError:
                pass
        # spatial_ref is for compatibility with GDAL
        crs_wkt = data_obj.rio.crs.to_wkt()
        grid_map_attrs["spatial_ref"] = crs_wkt
        grid_map_attrs["crs_wkt"] = crs_wkt
        if transform is not None:
            grid_map_attrs["GeoTransform"] = " ".join(
                [str(item) for item in transform.to_gdal()]
            )
        data_obj.coords[grid_mapping_name].rio.set_attrs(grid_map_attrs, inplace=True)

        # remove old crs if exists
        data_obj.attrs.pop("crs", None)

        return data_obj.rio.write_grid_mapping(
            grid_mapping_name=grid_mapping_name, inplace=True
        )

    def estimate_utm_crs(self, datum_name: str = "WGS 84") -> rasterio.crs.CRS:
        """Returns the estimated UTM CRS based on the bounds of the dataset.

        .. versionadded:: 0.2

        .. note:: Requires pyproj 3+

        Parameters
        ----------
        datum_name : str, optional
            The name of the datum to use in the query. Default is WGS 84.

        Returns
        -------
        rasterio.crs.CRS
        """
        if self.crs is None:
            raise RuntimeError("crs must be set to estimate UTM CRS.")

        # ensure using geographic coordinates
        if self.crs.is_geographic:  # pylint: disable=no-member
            minx, miny, maxx, maxy = self.bounds(recalc=True)
        else:
            minx, miny, maxx, maxy = self.transform_bounds("EPSG:4326", recalc=True)

        x_center = numpy.mean([minx, maxx]).item()
        y_center = numpy.mean([miny, maxy]).item()

        utm_crs_list = query_utm_crs_info(
            datum_name=datum_name,
            area_of_interest=AreaOfInterest(
                west_lon_degree=x_center,
                south_lat_degree=y_center,
                east_lon_degree=x_center,
                north_lat_degree=y_center,
            ),
        )
        try:
            return CRS.from_epsg(utm_crs_list[0].code)
        except IndexError:
            raise RuntimeError("Unable to determine UTM CRS") from None

    def _cached_transform(self) -> Optional[Affine]:
        """
        Get the transform from:
        1. The GeoTransform metatada property in the grid mapping
        2. The transform attribute.
        """
        try:
            # look in grid_mapping
            transform = numpy.fromstring(
                self._obj.coords[self.grid_mapping].attrs["GeoTransform"], sep=" "
            )
            # Calling .tolist() to assure the arguments are Python float and JSON serializable
            return Affine.from_gdal(*transform.tolist())

        except KeyError:
            try:
                return Affine(*self._obj.attrs["transform"][:6])
            except KeyError:
                pass
        return None

    def write_transform(
        self,
        transform: Optional[Affine] = None,
        grid_mapping_name: Optional[str] = None,
        inplace: bool = False,
    ) -> Union[xarray.Dataset, xarray.DataArray]:
        """
        .. versionadded:: 0.0.30

        Write the GeoTransform to the dataset where GDAL can read it in.

        https://gdal.org/drivers/raster/netcdf.html#georeference

        Parameters
        ----------
        transform: affine.Affine, optional
            The transform of the dataset. If not provided, it will be calculated.
        grid_mapping_name: str, optional
            Name of the grid_mapping coordinate to store the transform information in.
            Default is the grid_mapping name of the dataset.
        inplace: bool, optional
            If True, it will write to the existing dataset. Default is False.

        Returns
        -------
        :obj:`xarray.Dataset` | :obj:`xarray.DataArray`:
            Modified dataset with Geo Transform written.
        """
        transform = transform or self.transform(recalc=True)
        data_obj = self._get_obj(inplace=inplace)
        # delete the old attribute to prevent confusion
        data_obj.attrs.pop("transform", None)
        grid_mapping_name = (
            self.grid_mapping if grid_mapping_name is None else grid_mapping_name
        )
        try:
            grid_map_attrs = data_obj.coords[grid_mapping_name].attrs.copy()
        except KeyError:
            data_obj.coords[grid_mapping_name] = xarray.Variable((), 0)
            grid_map_attrs = data_obj.coords[grid_mapping_name].attrs.copy()
        grid_map_attrs["GeoTransform"] = " ".join(
            [str(item) for item in transform.to_gdal()]
        )
        data_obj.coords[grid_mapping_name].rio.set_attrs(grid_map_attrs, inplace=True)
        return data_obj.rio.write_grid_mapping(
            grid_mapping_name=grid_mapping_name, inplace=True
        )

    def transform(self, recalc: bool = False) -> Affine:
        """
        Parameters
        ----------
        recalc: bool, optional
            If True, it will re-calculate the transform instead of using
            the cached transform.

        Returns
        -------
        :obj:`affine.Affine`:
            The affine of the :obj:`xarray.Dataset` | :obj:`xarray.DataArray`
        """
        transform = self._cached_transform()
        if transform and (
            not transform.is_rectilinear or _affine_has_rotation(transform)
        ):
            if recalc:
                warnings.warn(
                    "Transform that is non-rectilinear or with rotation found. "
                    "Unable to recalculate."
                )
            return transform

        try:
            src_left, _, _, src_top = self._unordered_bounds(recalc=recalc)
            src_resolution_x, src_resolution_y = self.resolution(recalc=recalc)
        except (DimensionMissingCoordinateError, DimensionError):
            return Affine.identity() if transform is None else transform
        return Affine.translation(src_left, src_top) * Affine.scale(
            src_resolution_x, src_resolution_y
        )

    def write_coordinate_system(
        self, inplace: bool = False
    ) -> Union[xarray.Dataset, xarray.DataArray]:
        """
        Write the coordinate system CF metadata.

        .. versionadded:: 0.0.30

        Parameters
        ----------
        inplace: bool, optional
            If True, it will write to the existing dataset. Default is False.

        Returns
        -------
        :obj:`xarray.Dataset` | :obj:`xarray.DataArray`:
            The dataset with the CF coordinate system attributes added.
        """
        data_obj = self._get_obj(inplace=inplace)
        # add metadata to x,y coordinates
        is_projected = data_obj.rio.crs and data_obj.rio.crs.is_projected
        is_geographic = data_obj.rio.crs and data_obj.rio.crs.is_geographic
        x_coord_attrs = dict(data_obj.coords[self.x_dim].attrs)
        x_coord_attrs["axis"] = "X"
        y_coord_attrs = dict(data_obj.coords[self.y_dim].attrs)
        y_coord_attrs["axis"] = "Y"
        if is_projected:
            units = None
            if hasattr(data_obj.rio.crs, "linear_units_factor"):
                unit_factor = data_obj.rio.crs.linear_units_factor[-1]
                if unit_factor != 1:
                    units = f"{unit_factor} metre"
                else:
                    units = "metre"
            # X metadata
            x_coord_attrs["long_name"] = "x coordinate of projection"
            x_coord_attrs["standard_name"] = "projection_x_coordinate"
            if units:
                x_coord_attrs["units"] = units
            # Y metadata
            y_coord_attrs["long_name"] = "y coordinate of projection"
            y_coord_attrs["standard_name"] = "projection_y_coordinate"
            if units:
                y_coord_attrs["units"] = units
        elif is_geographic:
            # X metadata
            x_coord_attrs["long_name"] = "longitude"
            x_coord_attrs["standard_name"] = "longitude"
            x_coord_attrs["units"] = "degrees_east"
            # Y metadata
            y_coord_attrs["long_name"] = "latitude"
            y_coord_attrs["standard_name"] = "latitude"
            y_coord_attrs["units"] = "degrees_north"
        data_obj.coords[self.y_dim].attrs = y_coord_attrs
        data_obj.coords[self.x_dim].attrs = x_coord_attrs
        return data_obj

    def set_attrs(
        self, new_attrs: dict, inplace: bool = False
    ) -> Union[xarray.Dataset, xarray.DataArray]:
        """
        Set the attributes of the dataset/dataarray and reset
        rioxarray properties to re-search for them.

        Parameters
        ----------
        new_attrs: dict
            A dictionary of new attributes.
        inplace: bool, optional
            If True, it will write to the existing dataset. Default is False.

        Returns
        -------
        :obj:`xarray.Dataset` | :obj:`xarray.DataArray`:
            Modified dataset with new attributes.
        """
        data_obj = self._get_obj(inplace=inplace)
        # set the attributes
        data_obj.attrs = new_attrs
        # reset rioxarray properties depending
        # on attributes to be generated
        data_obj.rio._nodata = None
        data_obj.rio._crs = None
        return data_obj

    def update_attrs(
        self, new_attrs: dict, inplace: bool = False
    ) -> Union[xarray.Dataset, xarray.DataArray]:
        """
        Update the attributes of the dataset/dataarray and reset
        rioxarray properties to re-search for them.

        Parameters
        ----------
        new_attrs: dict
            A dictionary of new attributes to update with.
        inplace: bool, optional
            If True, it will write to the existing dataset. Default is False.

        Returns
        -------
        :obj:`xarray.Dataset` | :obj:`xarray.DataArray`:
            Modified dataset with updated attributes.
        """
        data_attrs = dict(self._obj.attrs)
        data_attrs.update(**new_attrs)
        return self.set_attrs(data_attrs, inplace=inplace)

    def set_encoding(
        self, new_encoding: dict, inplace: bool = False
    ) -> Union[xarray.Dataset, xarray.DataArray]:
        """
        Set the encoding of the dataset/dataarray and reset
        rioxarray properties to re-search for them.

        .. versionadded:: 0.4

        Parameters
        ----------
        new_encoding: dict
            A dictionary for encoding.
        inplace: bool, optional
            If True, it will write to the existing dataset. Default is False.

        Returns
        -------
        :obj:`xarray.Dataset` | :obj:`xarray.DataArray`:
            Modified dataset with new attributes.
        """
        data_obj = self._get_obj(inplace=inplace)
        # set the attributes
        data_obj.encoding = new_encoding
        # reset rioxarray properties depending
        # on attributes to be generated
        data_obj.rio._nodata = None
        data_obj.rio._crs = None
        return data_obj

    def update_encoding(
        self, new_encoding: dict, inplace: bool = False
    ) -> Union[xarray.Dataset, xarray.DataArray]:
        """
        Update the encoding of the dataset/dataarray and reset
        rioxarray properties to re-search for them.

        .. versionadded:: 0.4

        Parameters
        ----------
        new_encoding: dict
            A dictionary with encoding values to update with.
        inplace: bool, optional
            If True, it will write to the existing dataset. Default is False.

        Returns
        -------
        :obj:`xarray.Dataset` | :obj:`xarray.DataArray`:
            Modified dataset with updated attributes.
        """
        data_encoding = dict(self._obj.encoding)
        data_encoding.update(**new_encoding)
        return self.set_encoding(data_encoding, inplace=inplace)

    def set_spatial_dims(
        self, x_dim: str, y_dim: str, inplace: bool = True
    ) -> Union[xarray.Dataset, xarray.DataArray]:
        """
        This sets the spatial dimensions of the dataset.

        Parameters
        ----------
        x_dim: str
            The name of the x dimension.
        y_dim: str
            The name of the y dimension.
        inplace: bool, optional
            If True, it will modify the dataframe in place.
            Otherwise it will return a modified copy.

        Returns
        -------
        :obj:`xarray.Dataset` | :obj:`xarray.DataArray`:
            Dataset with spatial dimensions set.
        """

        data_obj = self._get_obj(inplace=inplace)
        if x_dim in data_obj.dims:
            data_obj.rio._x_dim = x_dim
        else:
            raise MissingSpatialDimensionError(
                f"x dimension ({x_dim}) not found.{_get_data_var_message(data_obj)}"
            )
        if y_dim in data_obj.dims:
            data_obj.rio._y_dim = y_dim
        else:
            raise MissingSpatialDimensionError(
                f"y dimension ({y_dim}) not found.{_get_data_var_message(data_obj)}"
            )
        return data_obj

    @property
    def x_dim(self) -> Hashable:
        """Hashable: The dimension for the X-axis."""
        if self._x_dim is not None:
            return self._x_dim
        raise MissingSpatialDimensionError(
            "x dimension not found. 'rio.set_spatial_dims()' or "
            "using 'rename()' to change the dimension name to 'x' can address this."
            f"{_get_data_var_message(self._obj)}"
        )

    @property
    def y_dim(self) -> Hashable:
        """Hashable: The dimension for the Y-axis."""
        if self._y_dim is not None:
            return self._y_dim
        raise MissingSpatialDimensionError(
            "y dimension not found. 'rio.set_spatial_dims()' or "
            "using 'rename()' to change the dimension name to 'y' can address this."
            f"{_get_data_var_message(self._obj)}"
        )

    @property
    def width(self) -> int:
        """int: Returns the width of the dataset (x dimension size)"""
        if self._width is not None:
            return self._width
        self._width = self._obj[self.x_dim].size
        return self._width

    @property
    def height(self) -> int:
        """int: Returns the height of the dataset (y dimension size)"""
        if self._height is not None:
            return self._height
        self._height = self._obj[self.y_dim].size
        return self._height

    @property
    def shape(self) -> tuple[int, int]:
        """tuple(int, int): Returns the shape (height, width)"""
        return (self.height, self.width)

    def _check_dimensions(self) -> Optional[str]:
        """
        This function validates that the dimensions 2D/3D and
        they are are in the proper order.

        Returns
        -------
        str or None: Name extra dimension.
        """
        extra_dims = tuple(set(list(self._obj.dims)) - {self.x_dim, self.y_dim})
        if len(extra_dims) > 1:
            raise TooManyDimensions(
                "Only 2D and 3D data arrays supported."
                f"{_get_data_var_message(self._obj)}"
            )
        if extra_dims and self._obj.dims != (extra_dims[0], self.y_dim, self.x_dim):
            dim_info: tuple = (extra_dims[0], self.y_dim, self.x_dim)
            raise InvalidDimensionOrder(
                f"Invalid dimension order. Expected order: {dim_info}. "
                f"You can use `DataArray.transpose{dim_info}`"
                " to reorder your dimensions."
                f"{_get_data_var_message(self._obj)}"
            )
        if not extra_dims and self._obj.dims != (self.y_dim, self.x_dim):
            dim_info = (self.y_dim, self.x_dim)
            raise InvalidDimensionOrder(
                f"Invalid dimension order. Expected order: {dim_info}. "
                f"You can use `DataArray.transpose{dim_info}`"
                " to reorder your dimensions."
                f"{_get_data_var_message(self._obj)}"
            )
        return str(extra_dims[0]) if extra_dims else None

    @property
    def count(self) -> int:
        """int: Returns the band count (z dimension size)"""
        if self._count is not None:
            return self._count
        extra_dim = self._check_dimensions()
        self._count = 1
        if extra_dim is not None:
            self._count = self._obj[extra_dim].size
        return self._count

    def _internal_bounds(self) -> tuple[float, float, float, float]:
        """Determine the internal bounds of the `xarray.DataArray`"""
        if self.x_dim not in self._obj.coords:
            raise DimensionMissingCoordinateError(f"{self.x_dim} missing coordinates.")
        if self.y_dim not in self._obj.coords:
            raise DimensionMissingCoordinateError(f"{self.y_dim} missing coordinates.")
        try:
            left = float(self._obj[self.x_dim][0])
            right = float(self._obj[self.x_dim][-1])
            top = float(self._obj[self.y_dim][0])
            bottom = float(self._obj[self.y_dim][-1])
        except IndexError:
            raise NoDataInBounds(
                "Unable to determine bounds from coordinates."
                f"{_get_data_var_message(self._obj)}"
            ) from None
        return left, bottom, right, top

    def resolution(self, recalc: bool = False) -> tuple[float, float]:
        """
        Determine if the resolution of the grid.
        If the transformation has rotation, the sign of the resolution is lost.

        Parameters
        ----------
        recalc: bool, optional
            Will force the resolution to be recalculated instead of using the
            transform attribute.

        Returns
        -------
        x_resolution, y_resolution: float
            The resolution of the `xarray.DataArray` | `xarray.Dataset`
        """
        transform = self._cached_transform()

        if (
            not recalc or self.width == 1 or self.height == 1
        ) and transform is not None:
            return _resolution(transform)

        # if the coordinates of the spatial dimensions are missing
        # use the cached transform resolution
        try:
            left, bottom, right, top = self._internal_bounds()
        except DimensionMissingCoordinateError:
            if transform is None:
                raise
            return _resolution(transform)

        if self.width == 1 or self.height == 1:
            raise OneDimensionalRaster(
                "Only 1 dimenional array found. Cannot calculate the resolution."
                f"{_get_data_var_message(self._obj)}"
            )

        resolution_x = (right - left) / (self.width - 1)
        resolution_y = (bottom - top) / (self.height - 1)
        return resolution_x, resolution_y

    def _unordered_bounds(
        self, recalc: bool = False
    ) -> tuple[float, float, float, float]:
        """
        Unordered bounds.

        Parameters
        ----------
        recalc: bool, optional
            Will force the bounds to be recalculated instead of using the
            transform attribute.

        Returns
        -------
        left, bottom, right, top: float
            Outermost coordinates of the `xarray.DataArray` | `xarray.Dataset`.
        """
        resolution_x, resolution_y = self.resolution(recalc=recalc)

        try:
            # attempt to get bounds from xarray coordinate values
            left, bottom, right, top = self._internal_bounds()
            left -= resolution_x / 2.0
            right += resolution_x / 2.0
            top -= resolution_y / 2.0
            bottom += resolution_y / 2.0
        except DimensionMissingCoordinateError as error:
            transform = self._cached_transform()
            if not transform:
                raise RioXarrayError("Transform not able to be determined.") from error
            left = transform.c
            top = transform.f
            right = left + resolution_x * self.width
            bottom = top + resolution_y * self.height

        return left, bottom, right, top

    def bounds(self, *, recalc: bool = False) -> tuple[float, float, float, float]:
        """
        Parameters
        ----------
        recalc: bool, optional
            Will force the bounds to be recalculated instead of using the
            transform attribute.

        Returns
        -------
        left, bottom, right, top: float
            Outermost coordinates of the `xarray.DataArray` | `xarray.Dataset`.
        """
        minx, miny, maxx, maxy = self._unordered_bounds(recalc=recalc)
        resolution_x, resolution_y = self.resolution(recalc=recalc)
        return _order_bounds(
            minx=minx,
            miny=miny,
            maxx=maxx,
            maxy=maxy,
            resolution_x=resolution_x,
            resolution_y=resolution_y,
        )

    def isel_window(
        self, window: rasterio.windows.Window, *, pad: bool = False
    ) -> Union[xarray.Dataset, xarray.DataArray]:
        """
        Use a rasterio.windows.Window to select a subset of the data.

        .. versionadded:: 0.6.0 pad

        .. warning:: Float indices are converted to integers.

        Parameters
        ----------
        window: :class:`rasterio.windows.Window`
            The window of the dataset to read.
        pad: bool, default=False
            Set to True to expand returned DataArray to dimensions of the window

        Returns
        -------
        :obj:`xarray.Dataset` | :obj:`xarray.DataArray`:
            The data in the window.
        """
        (row_start, row_stop), (col_start, col_stop) = window.toranges()
        row_start = 0 if row_start < 0 else math.floor(row_start)
        row_stop = 0 if row_stop < 0 else math.ceil(row_stop)
        col_start = 0 if col_start < 0 else math.floor(col_start)
        col_stop = 0 if col_stop < 0 else math.ceil(col_stop)
        row_slice = slice(int(row_start), int(row_stop))
        col_slice = slice(int(col_start), int(col_stop))
        array_subset = (
            self._obj.isel({self.y_dim: row_slice, self.x_dim: col_slice})
            .copy()  # this is to prevent sharing coordinates with the original dataset
            .rio.set_spatial_dims(x_dim=self.x_dim, y_dim=self.y_dim, inplace=True)
            .rio.write_transform(
                transform=rasterio.windows.transform(
                    rasterio.windows.Window.from_slices(
                        rows=row_slice,
                        cols=col_slice,
                        width=self.width,
                        height=self.height,
                    ),
                    self.transform(recalc=True),
                ),
                inplace=True,
            )
        )
        if pad:
            return array_subset.rio.pad_box(
                *rasterio.windows.bounds(window, self.transform(recalc=True))
            )
        return array_subset

    def slice_xy(
        self,
        minx: float,
        miny: float,
        maxx: float,
        maxy: float,
    ) -> Union[xarray.Dataset, xarray.DataArray]:
        """Slice the array by x,y bounds.

        Parameters
        ----------
        minx: float
            Minimum bound for x coordinate.
        miny: float
            Minimum bound for y coordinate.
        maxx: float
            Maximum bound for x coordinate.
        maxy: float
            Maximum bound for y coordinate.


        Returns
        -------
        :obj:`xarray.Dataset` | :obj:`xarray.DataArray`:
            The data in the slice.
        """
        left, bottom, right, top = self._internal_bounds()
        if top > bottom:
            y_slice = slice(maxy, miny)
        else:
            y_slice = slice(miny, maxy)

        if left > right:
            x_slice = slice(maxx, minx)
        else:
            x_slice = slice(minx, maxx)

        subset = (
            self._obj.sel({self.x_dim: x_slice, self.y_dim: y_slice})
            .copy()  # this is to prevent sharing coordinates with the original dataset
            .rio.set_spatial_dims(x_dim=self.x_dim, y_dim=self.y_dim, inplace=True)
            .rio.write_transform(inplace=True)
        )
        return subset

    def transform_bounds(
        self, dst_crs: Any, *, densify_pts: int = 21, recalc: bool = False
    ) -> tuple[float, float, float, float]:
        """Transform bounds from src_crs to dst_crs.

        Optionally densifying the edges (to account for nonlinear transformations
        along these edges) and extracting the outermost bounds.

        Note: this does not account for the antimeridian.

        Parameters
        ----------
        dst_crs: str, :obj:`rasterio.crs.CRS`, or dict
            Target coordinate reference system.
        densify_pts: uint, optional
            Number of points to add to each edge to account for nonlinear
            edges produced by the transform process.  Large numbers will produce
            worse performance.  Default: 21 (gdal default).
        recalc: bool, optional
            Will force the bounds to be recalculated instead of using the transform
            attribute.

        Returns
        -------
        left, bottom, right, top: float
            Outermost coordinates in target coordinate reference system.
        """
        return rasterio.warp.transform_bounds(
            self.crs, dst_crs, *self.bounds(recalc=recalc), densify_pts=densify_pts
        )

    def write_gcps(
        self,
        gcps: Iterable[GroundControlPoint],
        gcp_crs: Any,
        *,
        grid_mapping_name: Optional[str] = None,
        inplace: bool = False,
    ) -> Union[xarray.Dataset, xarray.DataArray]:
        """
        Write the GroundControlPoints to the dataset.

        https://rasterio.readthedocs.io/en/latest/topics/georeferencing.html#ground-control-points

        Parameters
        ----------
        gcp: list of :obj:`rasterio.control.GroundControlPoint`
            The Ground Control Points to integrate to the dataset.
        gcp_crs: str, :obj:`rasterio.crs.CRS`, or dict
            Coordinate reference system for the GCPs.
        grid_mapping_name: str, optional
            Name of the grid_mapping coordinate to store the GCPs information in.
            Default is the grid_mapping name of the dataset.
        inplace: bool, optional
            If True, it will write to the existing dataset. Default is False.

        Returns
        -------
        :obj:`xarray.Dataset` | :obj:`xarray.DataArray`:
            Modified dataset with Ground Control Points written.
        """
        grid_mapping_name = (
            self.grid_mapping if grid_mapping_name is None else grid_mapping_name
        )
        data_obj = self._get_obj(inplace=True)

        if gcp_crs:
            data_obj = data_obj.rio.write_crs(
                gcp_crs, grid_mapping_name=grid_mapping_name, inplace=inplace
            )
        try:
            grid_map_attrs = data_obj.coords[grid_mapping_name].attrs.copy()
        except KeyError:
            data_obj.coords[grid_mapping_name] = xarray.Variable((), 0)
            grid_map_attrs = data_obj.coords[grid_mapping_name].attrs.copy()
        geojson_gcps = _convert_gcps_to_geojson(gcps)
        grid_map_attrs["gcps"] = json.dumps(geojson_gcps)
        data_obj.coords[grid_mapping_name].rio.set_attrs(grid_map_attrs, inplace=True)
        self._gcps = list(gcps)
        return data_obj

    def get_gcps(self) -> Optional[list[GroundControlPoint]]:
        """
        Get the GroundControlPoints from the dataset.

        https://rasterio.readthedocs.io/en/latest/topics/georeferencing.html#ground-control-points

        Returns
        -------
        list of :obj:`rasterio.control.GroundControlPoint` or None
            The Ground Control Points from the dataset or None if not applicable
        """
        if self._gcps is not None:
            return self._gcps
        try:
            geojson_gcps = json.loads(self._obj.coords[self.grid_mapping].attrs["gcps"])
        except (KeyError, AttributeError):
            return None

        def _parse_gcp(gcp) -> GroundControlPoint:
            x, y, *z = gcp["geometry"]["coordinates"]
            z = z[0] if z else None
            return GroundControlPoint(
                x=x,
                y=y,
                z=z,
                row=gcp["properties"]["row"],
                col=gcp["properties"]["col"],
                id=gcp["properties"]["id"],
                info=gcp["properties"]["info"],
            )

        self._gcps = [_parse_gcp(gcp) for gcp in geojson_gcps["features"]]
        return self._gcps


def _convert_gcps_to_geojson(
    gcps: Iterable[GroundControlPoint],
) -> dict:
    """
    Convert GCPs to geojson.

    Parameters
    ----------
    gcps: The list of GroundControlPoint instances.

    Returns
    -------
    A FeatureCollection dict.
    """

    def _gcp_coordinates(gcp):
        if gcp.z is None:
            return [gcp.x, gcp.y]
        return [gcp.x, gcp.y, gcp.z]

    features = [
        {
            "type": "Feature",
            "properties": {
                "id": gcp.id,
                "info": gcp.info,
                "row": gcp.row,
                "col": gcp.col,
            },
            "geometry": {"type": "Point", "coordinates": _gcp_coordinates(gcp)},
        }
        for gcp in gcps
    ]
    return {"type": "FeatureCollection", "features": features}