File: _spatial_utils.py

package info (click to toggle)
python-rioxarray 0.21.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,480 kB
  • sloc: python: 8,247; makefile: 89
file content (500 lines) | stat: -rw-r--r-- 14,651 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
"""
Helper functions for determining spatial attributes.
"""
import copy
import math
import warnings
from collections.abc import Hashable
from typing import Any, Iterable, Optional, Union

import numpy
import rasterio.mask
import rasterio.warp
import rasterio.windows
import xarray
from affine import Affine
from rasterio.control import GroundControlPoint
from rasterio.features import geometry_mask

from rioxarray.exceptions import MissingSpatialDimensionError

FILL_VALUE_NAMES = ("_FillValue", "missing_value", "fill_value", "nodata")
UNWANTED_RIO_ATTRS = ("nodatavals", "is_tiled", "res")
DEFAULT_GRID_MAP = "spatial_ref"

# DTYPE TO NODATA MAP
# Based on: https://github.com/OSGeo/gdal/blob/v3.12.1/swig/python/gdal-utils/osgeo_utils/gdal_calc.py#L49-L66
# And: https://github.com/rasterio/rasterio/blob/1.5.0/rasterio/dtypes.py#L91-L103
_NODATA_DTYPE_MAP = {
    1: 255,  # GDT_Byte
    2: 65535,  # GDT_UInt16
    3: -32768,  # GDT_Int16
    4: 4294967295,  # GDT_UInt32
    5: -2147483648,  # GDT_Int32
    6: numpy.nan,  # GDT_Float32
    7: numpy.nan,  # GDT_Float64
    8: None,  # GDT_CInt16
    9: None,  # GDT_CInt32
    10: numpy.nan,  # GDT_CFloat32
    11: numpy.nan,  # GDT_CFloat64
    12: 18446744073709551615,  # GDT_UInt64
    13: -9223372036854775808,  # GDT_Int64
    14: -128,  # GDT_Int8
    15: numpy.nan,  # GDT_Float16
    16: numpy.nan,  # GDT_CFloat16
}


def _affine_has_rotation(affine: Affine) -> bool:
    """
    Determine if the affine has rotation.

    Parameters
    ----------
    affine: :obj:`affine.Affine`
        The affine of the grid.

    Returns
    -------
    bool
    """
    return affine.b == affine.d != 0


def _resolution(affine: Affine) -> tuple[float, float]:
    """
    Determine if the resolution of the affine.
    If it has rotation, the sign of the resolution is lost.

    Based on: https://github.com/mapbox/rasterio/blob/6185a4e4ad72b5669066d2d5004bf46d94a6d298/rasterio/_base.pyx#L943-L951

    Parameters
    ----------
    affine: :obj:`affine.Affine`
        The affine of the grid.


    Returns
    --------
    x_resolution: float
        The X resolution of the affine.
    y_resolution: float
        The Y resolution of the affine.
    """
    if not _affine_has_rotation(affine):
        return affine.a, affine.e
    return (
        math.sqrt(affine.a**2 + affine.d**2),
        math.sqrt(affine.b**2 + affine.e**2),
    )


def affine_to_coords(
    affine: Affine, width: int, height: int, *, x_dim: str = "x", y_dim: str = "y"
) -> dict[str, numpy.ndarray]:
    """Generate 1d pixel centered coordinates from affine.

    Based on code from the xarray rasterio backend.

    Parameters
    ----------
    affine: :obj:`affine.Affine`
        The affine of the grid.
    width: int
        The width of the grid.
    height: int
        The height of the grid.
    x_dim: str, optional
        The name of the X dimension. Default is 'x'.
    y_dim: str, optional
        The name of the Y dimension. Default is 'y'.

    Returns
    -------
    dict: x and y coordinate arrays.

    """
    transform = affine * affine.translation(0.5, 0.5)
    if affine.is_rectilinear and not _affine_has_rotation(affine):
        x_coords, _ = transform * (numpy.arange(width), numpy.zeros(width))
        _, y_coords = transform * (numpy.zeros(height), numpy.arange(height))
    else:
        x_coords, y_coords = transform * numpy.meshgrid(
            numpy.arange(width),
            numpy.arange(height),
        )
    return {y_dim: y_coords, x_dim: x_coords}


def _generate_spatial_coords(
    *, affine: Affine, width: int, height: int
) -> dict[Hashable, Any]:
    """get spatial coords in new transform"""
    new_spatial_coords = affine_to_coords(affine, width, height)
    if new_spatial_coords["x"].ndim == 1:
        return {
            "x": xarray.IndexVariable("x", new_spatial_coords["x"]),
            "y": xarray.IndexVariable("y", new_spatial_coords["y"]),
        }
    return {
        "xc": (("y", "x"), new_spatial_coords["x"]),
        "yc": (("y", "x"), new_spatial_coords["y"]),
    }


def _get_nonspatial_coords(
    src_data_array: Union[xarray.DataArray, xarray.Dataset],
) -> dict[Hashable, Union[xarray.Variable, xarray.IndexVariable]]:
    coords: dict[Hashable, Union[xarray.Variable, xarray.IndexVariable]] = {}
    for coord in set(src_data_array.coords) - {
        src_data_array.rio.x_dim,
        src_data_array.rio.y_dim,
        DEFAULT_GRID_MAP,
    }:
        # skip 2D spatial coords
        if (
            src_data_array.rio.x_dim in src_data_array[coord].dims
            and src_data_array.rio.y_dim in src_data_array[coord].dims
        ):
            continue
        if src_data_array[coord].ndim == 1:
            coords[coord] = xarray.IndexVariable(
                src_data_array[coord].dims,
                src_data_array[coord].values,
                src_data_array[coord].attrs,
            )
        else:
            coords[coord] = xarray.Variable(
                src_data_array[coord].dims,
                src_data_array[coord].values,
                src_data_array[coord].attrs,
            )
    return coords


def _make_coords(
    *,
    src_data_array: Union[xarray.DataArray, xarray.Dataset],
    dst_affine: Affine,
    dst_width: int,
    dst_height: int,
    force_generate: bool = False,
) -> dict[Hashable, Any]:
    """Generate the coordinates of the new projected `xarray.DataArray`"""
    coords = _get_nonspatial_coords(src_data_array)
    if (
        force_generate
        or (
            src_data_array.rio.x_dim in src_data_array.coords
            and src_data_array.rio.y_dim in src_data_array.coords
        )
        or ("xc" in src_data_array.coords and "yc" in src_data_array.coords)
    ):
        new_coords = _generate_spatial_coords(
            affine=dst_affine, width=dst_width, height=dst_height
        )
        new_coords.update(coords)
        return new_coords
    return coords


def _get_data_var_message(obj: Union[xarray.DataArray, xarray.Dataset]) -> str:
    """
    Get message for named data variables.
    """
    try:
        return f" Data variable: {obj.name}" if obj.name else ""
    except AttributeError:
        return ""


def _get_spatial_dims(
    obj: Union[xarray.Dataset, xarray.DataArray], *, var: Union[Any, Hashable]
) -> tuple[str, str]:
    """
    Retrieve the spatial dimensions of the dataset
    """
    try:
        return obj[var].rio.x_dim, obj[var].rio.y_dim
    except MissingSpatialDimensionError as err:
        try:
            obj[var].rio.set_spatial_dims(
                x_dim=obj.rio.x_dim, y_dim=obj.rio.y_dim, inplace=True
            )
            return obj.rio.x_dim, obj.rio.y_dim
        except MissingSpatialDimensionError:
            raise err from None


def _has_spatial_dims(
    obj: Union[xarray.Dataset, xarray.DataArray], *, var: Union[Any, Hashable]
) -> bool:
    """
    Check to see if the variable in the Dataset has spatial dimensions
    """
    try:
        # pylint: disable=pointless-statement
        _get_spatial_dims(obj, var=var)
    except MissingSpatialDimensionError:
        return False
    return True


def _order_bounds(
    *,
    minx: float,
    miny: float,
    maxx: float,
    maxy: float,
    resolution_x: float,
    resolution_y: float,
) -> tuple[float, float, float, float]:
    """
    Make sure that the bounds are in the correct order
    """
    if resolution_y < 0:
        top = maxy
        bottom = miny
    else:
        top = miny
        bottom = maxy
    if resolution_x < 0:
        left = maxx
        right = minx
    else:
        left = minx
        right = maxx

    return left, bottom, right, top


def _convert_gcps_to_geojson(
    gcps: Iterable[GroundControlPoint],
) -> dict:
    """
    Convert GCPs to geojson.

    Parameters
    ----------
    gcps: The list of GroundControlPoint instances.

    Returns
    -------
    A FeatureCollection dict.
    """

    def _gcp_coordinates(gcp):
        if gcp.z is None:
            return [gcp.x, gcp.y]
        return [gcp.x, gcp.y, gcp.z]

    features = [
        {
            "type": "Feature",
            "properties": {
                "id": gcp.id,
                "info": gcp.info,
                "row": gcp.row,
                "col": gcp.col,
            },
            "geometry": {"type": "Point", "coordinates": _gcp_coordinates(gcp)},
        }
        for gcp in gcps
    ]
    return {"type": "FeatureCollection", "features": features}


def _convert_str_to_resampling(name: str) -> rasterio.warp.Resampling:
    """
    Convert from string to rasterio.warp.Resampling enum, raises ValueError on bad input.

    Parameters
    ----------
    name: str
        The string to convert.

    Returns
    -------
    :obj:`rasterio.warp.Resampling`
    """
    try:
        return getattr(rasterio.warp.Resampling, name.lower())
    except AttributeError:
        raise ValueError(f"Bad resampling parameter: {name}") from None


def _generate_attrs(
    *, src_data_array: xarray.DataArray, dst_nodata: Optional[float]
) -> dict[str, Any]:
    # add original attributes
    new_attrs = copy.deepcopy(src_data_array.attrs)
    # remove all nodata information
    for unwanted_attr in FILL_VALUE_NAMES + UNWANTED_RIO_ATTRS:
        new_attrs.pop(unwanted_attr, None)

    # add nodata information
    fill_value = (
        src_data_array.rio.nodata
        if src_data_array.rio.nodata is not None
        else dst_nodata
    )
    if src_data_array.rio.encoded_nodata is None and fill_value is not None:
        new_attrs["_FillValue"] = fill_value

    return new_attrs


def _add_attrs_proj(
    *, new_data_array: xarray.DataArray, src_data_array: xarray.DataArray
) -> xarray.DataArray:
    """Make sure attributes and projection correct"""
    # make sure dimension information is preserved
    if new_data_array.rio._x_dim is None:
        new_data_array.rio._x_dim = src_data_array.rio.x_dim
    if new_data_array.rio._y_dim is None:
        new_data_array.rio._y_dim = src_data_array.rio.y_dim

    # make sure attributes preserved
    new_attrs = _generate_attrs(src_data_array=src_data_array, dst_nodata=None)
    # remove fill value if it already exists in the encoding
    # this is for data arrays pulling the encoding from a
    # source data array instead of being generated anew.
    if "_FillValue" in new_data_array.encoding:
        new_attrs.pop("_FillValue", None)

    new_data_array.rio.set_attrs(new_attrs, inplace=True)

    # make sure projection added
    new_data_array.rio.write_grid_mapping(src_data_array.rio.grid_mapping, inplace=True)
    new_data_array.rio.write_crs(src_data_array.rio.crs, inplace=True)
    new_data_array.rio.write_coordinate_system(inplace=True)
    new_data_array.rio.write_transform(inplace=True)
    # make sure encoding added
    new_data_array.encoding = src_data_array.encoding.copy()
    return new_data_array


def _make_dst_affine(
    *,
    src_data_array: xarray.DataArray,
    src_crs: rasterio.crs.CRS,
    dst_crs: rasterio.crs.CRS,
    dst_resolution: Optional[Union[float, tuple[float, float]]] = None,
    dst_shape: Optional[tuple[float, float]] = None,
    **kwargs,
):
    """Determine the affine of the new projected `xarray.DataArray`"""
    src_bounds = ()
    if (
        "gcps" not in kwargs
        and "rpcs" not in kwargs
        and "src_geoloc_array" not in kwargs
    ):
        src_bounds = src_data_array.rio.bounds()
    src_height, src_width = src_data_array.rio.shape
    dst_height, dst_width = dst_shape if dst_shape is not None else (None, None)
    # pylint: disable=isinstance-second-argument-not-valid-type
    if isinstance(dst_resolution, Iterable):
        dst_resolution = tuple(abs(res_val) for res_val in dst_resolution)  # type: ignore
    elif dst_resolution is not None:
        dst_resolution = abs(dst_resolution)  # type: ignore

    for key, value in (
        ("resolution", dst_resolution),
        ("dst_height", dst_height),
        ("dst_width", dst_width),
    ):
        if value is not None:
            kwargs[key] = value
    dst_affine, dst_width, dst_height = rasterio.warp.calculate_default_transform(
        src_crs,
        dst_crs,
        src_width,
        src_height,
        *src_bounds,
        **kwargs,
    )
    return dst_affine, dst_width, dst_height


def _clip_from_disk(
    xds: xarray.DataArray,
    *,
    geometries: Iterable,
    all_touched: bool,
    drop: bool,
    invert: bool,
) -> Optional[xarray.DataArray]:
    """
    clip from disk if the file object is available
    """
    try:
        rio_dataset = xds.rio._manager.acquire()
    except AttributeError:
        warnings.warn("File object not available, clipping in-memory.")
        return None

    out_image, out_transform = rasterio.mask.mask(
        rio_dataset,
        geometries,
        all_touched=all_touched,
        invert=invert,
        crop=drop,
    )
    if xds.rio.encoded_nodata is not None and not numpy.isnan(xds.rio.encoded_nodata):
        out_image = out_image.astype(numpy.float64)
        out_image[out_image == xds.rio.encoded_nodata] = numpy.nan

    height, width = out_image.shape[-2:]
    cropped_ds = xarray.DataArray(
        name=xds.name,
        data=out_image,
        coords=_make_coords(
            src_data_array=xds,
            dst_affine=out_transform,
            dst_width=width,
            dst_height=height,
        ),
        dims=xds.dims,
        attrs=xds.attrs,
    )
    cropped_ds.encoding = xds.encoding
    return cropped_ds


def _clip_xarray(
    xds: xarray.DataArray,
    *,
    geometries: Iterable,
    all_touched: bool,
    drop: bool,
    invert: bool,
) -> xarray.DataArray:
    """
    clip the xarray DataArray
    """
    clip_mask_arr = geometry_mask(
        geometries=geometries,
        out_shape=(int(xds.rio.height), int(xds.rio.width)),
        transform=xds.rio.transform(recalc=True),
        invert=not invert,
        all_touched=all_touched,
    )
    clip_mask_xray = xarray.DataArray(
        clip_mask_arr,
        dims=(xds.rio.y_dim, xds.rio.x_dim),
    )
    cropped_ds = xds.where(clip_mask_xray)
    if drop:
        cropped_ds.rio.set_spatial_dims(
            x_dim=xds.rio.x_dim, y_dim=xds.rio.y_dim, inplace=True
        )
        cropped_ds = cropped_ds.rio.isel_window(
            rasterio.windows.get_data_window(
                numpy.ma.masked_array(clip_mask_arr, ~clip_mask_arr)
            )
        )
    if xds.rio.nodata is not None and not numpy.isnan(xds.rio.nodata):
        cropped_ds = cropped_ds.fillna(xds.rio.nodata)

    return cropped_ds.astype(xds.dtype)