File: DEVICES.md

package info (click to toggle)
python-roborock 4.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,480 kB
  • sloc: python: 16,602; makefile: 17; sh: 6
file content (679 lines) | stat: -rw-r--r-- 25,215 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
# Roborock Devices & Discovery

The devices module provides functionality to discover Roborock devices on the
network. This section documents the full lifecycle of device discovery across
Cloud and Network.

## Usage TL;DR

*   **Discovery**: Use `roborock.devices.device_manager.DeviceManager` to get device instances.
    *   Call `create_device_manager(user_params)` then `await device_manager.get_devices()`.
*   **Control**:
    *   **Vacuums (V1)**: Use `device.v1_properties` to access traits like `status` or `consumables`.
        *   Call `await trait.refresh()` to update state.
        *   Use `device.v1_properties.command.send()` for raw commands (start/stop).
    *   **Washers (A01)**: Use `device.a01_properties` for Dyad/Zeo devices.
        *   Use `await device.a01_properties.query_values([...])` to get state.
        *   Use `await device.a01_properties.set_value(protocol, value)` to control.

## Background: Understanding Device Protocols

**The library supports three device protocol versions, each with different capabilities:**

### Protocol Summary

| Protocol | Device Examples | MQTT | Local TCP | Channel Type | Notes |
|----------|----------------|------|-----------|--------------|-------|
| **V1** (`pv=1.0`) | Most vacuum robots (S7, S8, Q5, Q7, etc.) | ✅ | ✅ | `V1Channel` with `RpcChannel` | Prefers local, falls back to MQTT |
| **A01** (`pv=A01`) | Dyad, Zeo washers | ✅ | ❌ | `MqttChannel` + helpers | MQTT only, DPS protocol |
| **B01** (`pv=B01`) | Some newer models | ✅ | ❌ | `MqttChannel` + helpers | MQTT only, DPS protocol |

**Key Point:** The `DeviceManager` automatically detects the protocol version and creates the appropriate channel type. You don't need to handle this manually.

## Internal Architecture

The library is organized into distinct layers, each with a specific responsibility. **Different device protocols use different channel implementations:**

```mermaid
graph TB
    subgraph "Application Layer"
        User[Application Code]
    end

    subgraph "Device Management Layer"
        DM[DeviceManager<br/>Detects protocol version]
    end

    subgraph "Device Types by Protocol"
        V1Dev[V1 Devices<br/>pv=1.0<br/>Most vacuums]
        A01Dev[A01 Devices<br/>pv=A01<br/>Dyad, Zeo]
        B01Dev[B01 Devices<br/>pv=B01<br/>Some models]
    end

    subgraph "Traits Layer"
        V1Traits[V1 Traits<br/>Clean, Map, etc.]
        A01Traits[A01 Traits<br/>DPS-based]
        B01Traits[B01 Traits<br/>DPS-based]
    end

    subgraph "Channel Layer"
        V1C[V1Channel<br/>MQTT + Local]
        A01C[A01 send_decoded_command<br/>MQTT only]
        B01C[B01 send_decoded_command<br/>MQTT only]
        RPC[RpcChannel<br/>Multi-strategy]
        MC[MqttChannel<br/>Per-device wrapper]
        LC[LocalChannel<br/>TCP :58867]
    end

    subgraph "Session Layer"
        MS[MqttSession<br/>SHARED by all devices<br/>Idle timeout]
        LS[LocalSession<br/>Factory]
    end

    subgraph "Protocol Layer"
        V1P[V1 Protocol<br/>JSON RPC + AES]
        A01P[A01 Protocol<br/>DPS format]
        B01P[B01 Protocol<br/>DPS format]
    end

    subgraph "Transport Layer"
        MQTT[MQTT Broker<br/>Roborock Cloud]
        TCP[TCP Socket<br/>Direct to device]
    end

    User --> DM
    DM -->|pv=1.0| V1Dev
    DM -->|pv=A01| A01Dev
    DM -->|pv=B01| B01Dev

    V1Dev --> V1Traits
    A01Dev --> A01Traits
    B01Dev --> B01Traits

    V1Traits --> V1C
    A01Traits --> A01C
    B01Traits --> B01C

    V1C --> RPC
    RPC -->|Strategy 1| LC
    RPC -->|Strategy 2| MC
    A01C --> MC
    B01C --> MC

    MC --> MS
    LC --> LS

    MC --> V1P
    MC --> A01P
    MC --> B01P
    LC --> V1P

    MS --> MQTT
    LC --> TCP
    MQTT <--> TCP

    style User fill:#e1f5ff
    style DM fill:#fff4e1
    style V1C fill:#ffe1e1
    style RPC fill:#ffe1e1
    style MS fill:#e1ffe1
    style V1P fill:#f0e1ff
    style A01P fill:#f0e1ff
    style B01P fill:#f0e1ff
```

### Layer Responsibilities

1. **Device Management Layer**: Detects protocol version (`pv` field) and creates appropriate channels
2. **Device Types**: Different devices based on protocol version (V1, A01, B01)
3. **Traits Layer**: Protocol-specific device capabilities and commands
4. **Channel Layer**: Protocol-specific communication patterns
   - **V1**: Full RPC channel with local + MQTT fallback
   - **A01/B01**: Helper functions wrapping MqttChannel (MQTT only)
   - **MqttChannel**: Per-device wrapper that uses shared `MqttSession`
5. **Session Layer**: Connection pooling and subscription management
   - **MqttSession**: **Shared single connection** for all devices
   - **LocalSession**: Factory for creating device-specific local connections
6. **Protocol Layer**: Message encoding/decoding for different device versions
7. **Transport Layer**: Low-level MQTT and TCP communication

**Important:** All `MqttChannel` instances share the same `MqttSession`, which maintains a single MQTT connection to the broker. This means:
- Only one TCP connection to the MQTT broker regardless of device count
- Subscription management is centralized with idle timeout optimization
- All devices communicate through device-specific MQTT topics on the shared connection

### Protocol-Specific Architecture

| Protocol | Channel Type | Local Support | RPC Strategy | Use Case |
|----------|-------------|---------------|--------------|----------|
| **V1** (`pv=1.0`) | `V1Channel` with `RpcChannel` | ✅ Yes | Multi-strategy (Local → MQTT) | Most vacuum robots |
| **A01** (`pv=A01`) | `MqttChannel` + helpers | ❌ No | Direct MQTT | Dyad, Zeo washers |
| **B01** (`pv=B01`) | `MqttChannel` + helpers | ❌ No | Direct MQTT | Some newer models |

## Account Setup Internals

### Login

- Login can happen with either email and password or email and sending a code. We
  currently prefer email with sending a code -- however the roborock no longer
  supports this method of login. In the future we may want to migrate to password
  if this login method is no longer supported.
- The Login API provides a `userData` object with information on connecting to the cloud APIs
- This `rriot` data contains per-session information, unique each time you login.
  - This contains information used to connect to MQTT
  - You get an `-eu` suffix in the API URLs if you are in the eu and `-us` if you are in the us

## Home Data Internals

The `HomeData` includes information about the various devices in the home. We use `v3`
and it is notable that if devices don't show up in the `home_data` response it is likely
that a newer version of the API should be used.

- `products`: This is a list of all of the products you have on your account. These objects are always the same (i.e. a s7 maxv is always the exact same.)
  - It only shows the products for devices available on your account
- `devices` and `received_devices`:
  - These both share the same objects, but one is for devices that have been shared with you and one is those that are on your account.
  - The big things here are (MOST are static):
    - `duid`: A unique identifier for your device (this is always the same i think)
    - `name`: The name of the device in your app
    - `local_key`: The local key that is needed for encoding and decoding messages for the device. This stays the same unless someone sets their vacuum back up.
    - `pv`: the protocol version (i.e. 1.0 or A1 or B1)
    - `product_id`: The id of the product from the above products list.
    - `device_status`: An initial status for some of the data we care about, though this changes on each update.
- `rooms`: The rooms in the home.
  - This changes if the user adds a new room or changes its name.
  - We have to combine this with the room numbers from `GET_ROOM_MAPPING` on the device
  - There is another REST request `get_rooms` that will do the same thing.
  - Note: If we cache home_data, we likely need to use `get_rooms` to get rooms fresh

## Connection Implementation

### Connection Flow by Protocol

The connection flow differs based on the device protocol version:

#### V1 Devices (Most Vacuums) - MQTT + Local

```mermaid
sequenceDiagram
    participant App as Application
    participant DM as DeviceManager
    participant V1C as V1Channel
    participant RPC as RpcChannel
    participant MC as MqttChannel
    participant LC as LocalChannel
    participant MS as MqttSession
    participant Broker as MQTT Broker
    participant Device as V1 Vacuum

    App->>DM: create_device_manager()
    DM->>MS: Create MQTT Session
    MS->>Broker: Connect
    Broker-->>MS: Connected

    App->>DM: get_devices()
    Note over DM: Detect pv=1.0
    DM->>V1C: Create V1Channel
    V1C->>MC: Create MqttChannel
    V1C->>LC: Create LocalChannel (deferred)

    Note over V1C: Subscribe to device topics
    V1C->>MC: subscribe()
    MC->>MS: subscribe(topic, callback)
    MS->>Broker: SUBSCRIBE

    Note over V1C: Fetch network info via MQTT
    V1C->>RPC: send_command(GET_NETWORK_INFO)
    RPC->>MC: publish(request)
    MC->>MS: publish(topic, message)
    MS->>Broker: PUBLISH
    Broker->>Device: Command
    Device->>Broker: Response
    Broker->>MS: Message
    MS->>MC: callback(message)
    MC->>RPC: decoded message
    RPC-->>V1C: NetworkInfo

    Note over V1C: Connect locally using IP
    V1C->>LC: connect()
    LC->>Device: TCP Connect :58867
    Device-->>LC: Connected

    Note over App: Commands prefer local
    App->>V1C: send_command(GET_STATUS)
    V1C->>RPC: send_command()
    RPC->>LC: publish(request) [Try local first]
    LC->>Device: Command via TCP
    Device->>LC: Response
    LC->>RPC: decoded message
    RPC-->>App: Status
```

#### A01/B01 Devices (Dyad, Zeo) - MQTT Only

```mermaid
sequenceDiagram
    participant App as Application
    participant DM as DeviceManager
    participant A01 as A01 Traits
    participant Helper as send_decoded_command
    participant MC as MqttChannel
    participant MS as MqttSession
    participant Broker as MQTT Broker
    participant Device as A01 Device

    App->>DM: create_device_manager()
    DM->>MS: Create MQTT Session
    MS->>Broker: Connect
    Broker-->>MS: Connected

    App->>DM: get_devices()
    Note over DM: Detect pv=A01
    DM->>MC: Create MqttChannel
    DM->>A01: Create A01 Traits

    Note over A01: Subscribe to device topics
    A01->>MC: subscribe()
    MC->>MS: subscribe(topic, callback)
    MS->>Broker: SUBSCRIBE

    Note over App: All commands via MQTT
    App->>A01: set_power(True)
    A01->>Helper: send_decoded_command()
    Helper->>MC: subscribe(find_response)
    Helper->>MC: publish(request)
    MC->>MS: publish(topic, message)
    MS->>Broker: PUBLISH
    Broker->>Device: Command
    Device->>Broker: Response
    Broker->>MS: Message
    MS->>MC: callback(message)
    MC->>Helper: decoded message
    Helper-->>App: Result
```

### Key Differences

| Aspect | V1 Devices | A01/B01 Devices |
|--------|------------|-----------------|
| **Protocols** | V1 Protocol (JSON RPC) | DPS Protocol |
| **Transports** | MQTT + Local TCP | MQTT only |
| **Channel Type** | `V1Channel` with `RpcChannel` | `MqttChannel` with helpers |
| **Local Support** | ✅ Yes, preferred | ❌ No |
| **Fallback** | Local → MQTT | N/A |
| **Connection** | Requires network info fetch | Direct MQTT |
| **Examples** | Most vacuum robots | Dyad washers, Zeo models |

### MQTT Connection (All Devices)

- Initial device information must be obtained from MQTT
- For V1 devices, we set up the MQTT device connection before the local device connection
  - The `NetworkingInfo` needs to be fetched to get additional information about connecting to the device (e.g., Local IP Address)
  - This networking info can be cached to reduce network calls
  - MQTT is also the only way to get the device Map
- Incoming and outgoing messages are decoded/encoded using the device `local_key`
- For A01/B01 devices, MQTT is the only transport

### Local Connection (V1 Devices Only)

- We use the `ip` from the `NetworkingInfo` to find the device
- The local connection is preferred for improved latency and reducing load on the cloud servers to avoid rate limiting
- Connections are made using a normal TCP socket on port `58867`
- Incoming and outgoing messages are decoded/encoded using the device `local_key`
- Messages received on the stream may be partially received, so we keep a running buffer as messages are partially decoded
- **Not available for A01/B01 devices**

### RPC Pattern (V1 Devices)

V1 devices use a publish/subscribe model for both MQTT and local connections, with an RPC abstraction on top:

```mermaid
graph LR
    subgraph "RPC Layer"
        A[send_command] -->|1. Create request| B[Encoder]
        B -->|2. Subscribe for response| C[Channel.subscribe]
        B -->|3. Publish request| D[Channel.publish]
        C -->|4. Wait for match| E[find_response callback]
        E -->|5. Match request_id| F[Future.set_result]
        F -->|6. Return| G[Command Result]
    end

    subgraph "Channel Layer"
        C --> H[Subscription Map]
        D --> I[Transport]
        I --> J[Device]
        J --> K[Incoming Messages]
        K --> H
        H --> E
    end
```

**Key Design Points:**

1. **Temporary Subscriptions**: Each RPC creates a temporary subscription that matches the request ID
2. **Subscription Reuse**: `MqttSession` keeps subscriptions alive for 60 seconds (or idle timeout) to enable reuse during command bursts
3. **Timeout Handling**: Commands timeout after 10 seconds if no response is received
4. **Multiple Strategies**: `V1Channel` tries local first, then falls back to MQTT if local fails

## Class Design & Components

### Current Architecture

The current design separates concerns into distinct layers:

```mermaid
classDiagram
    class Channel {
        <<abstract>>
        +subscribe(callback) Callable
        +publish(message)
        +is_connected() bool
    }

    class MqttChannel {
        -MqttSession session
        -duid: str
        -local_key: str
        +subscribe(callback)
        +publish(message)
    }

    class LocalChannel {
        -host: str
        -transport: Transport
        -local_key: str
        +connect()
        +subscribe(callback)
        +publish(message)
        +close()
    }

    class V1Channel {
        -MqttChannel mqtt_channel
        -LocalChannel local_channel
        -RpcChannel rpc_channel
        +send_command(method, params)
        +subscribe(callback)
    }

    class RpcChannel {
        -List~RpcStrategy~ strategies
        +send_command(method, params)
    }

    class RpcStrategy {
        +name: str
        +channel: Channel
        +encoder: Callable
        +decoder: Callable
        +health_manager: HealthManager
    }

    class MqttSession {
        -Client client
        -dict listeners
        -dict idle_timers
        +subscribe(topic, callback)
        +publish(topic, payload)
        +close()
    }

    Channel <|-- MqttChannel
    Channel <|-- LocalChannel
    Channel <|-- V1Channel
    MqttChannel --> MqttSession
    V1Channel --> MqttChannel
    V1Channel --> LocalChannel
    V1Channel --> RpcChannel
    RpcChannel --> RpcStrategy
    RpcStrategy --> Channel
```

### Key Components

#### Channel Interface

The `Channel` abstraction provides a uniform interface for both MQTT and local connections:

- **`subscribe(callback)`**: Register a callback for incoming messages
- **`publish(message)`**: Send a message to the device
- **`is_connected`**: Check connection status

This abstraction allows the RPC layer to work identically over both transports.

#### MqttSession (Shared Across All Devices)

The `MqttSession` manages a **single shared MQTT connection** for all devices:

- **Single Connection**: Only one TCP connection to the MQTT broker, regardless of device count
- **Per-Device Topics**: Each device communicates via its own MQTT topics (e.g., `rr/m/i/{user}/{username}/{duid}`)
- **Subscription Pooling**: Multiple callbacks can subscribe to the same topic
- **Idle Timeout**: Keeps subscriptions alive for 10 seconds after the last callback unsubscribes (enables reuse during command bursts)
- **Reconnection**: Automatically reconnects and re-establishes all subscriptions on connection loss
- **Thread-Safe**: Uses asyncio primitives for safe concurrent access

**Efficiency**: Creating 5 devices means 5 `MqttChannel` instances but only 1 `MqttSession` and 1 MQTT broker connection.

#### MqttChannel (Per-Device Wrapper)

Each device gets its own `MqttChannel` instance that:
- Wraps the shared `MqttSession`
- Manages device-specific topics (publish to `rr/m/i/.../duid`, subscribe to `rr/m/o/.../duid`)
- Handles protocol-specific encoding/decoding with the device's `local_key`
- Provides the same `Channel` interface as `LocalChannel`

#### RpcChannel with Multiple Strategies (V1 Only)

The `RpcChannel` implements the request/response pattern over pub/sub channels and is **only used by V1 devices**:

```python
# Example: V1Channel tries local first, then MQTT
strategies = [
    RpcStrategy(name="local", channel=local_channel, ...),
    RpcStrategy(name="mqtt", channel=mqtt_channel, ...),
]
rpc_channel = RpcChannel(strategies)
```

For each V1 command:
1. Try the first strategy (local)
2. If it fails, try the next strategy (MQTT)
3. Return the first successful result

**A01/B01 devices** don't use `RpcChannel`. Instead, they use helper functions (`send_decoded_command`) that directly wrap `MqttChannel`.

#### Protocol-Specific Channel Architecture

| Component | V1 Devices | A01/B01 Devices |
|-----------|------------|-----------------|
| **Channel Class** | `V1Channel` | `MqttChannel` directly |
| **RPC Abstraction** | `RpcChannel` with strategies | Helper functions |
| **Strategy Pattern** | ✅ Multi-strategy (Local → MQTT) | ❌ Direct MQTT only |
| **Health Manager** | ✅ Tracks local/MQTT health | ❌ Not needed |
| **Code Location** | `v1_channel.py` | `a01_channel.py`, `b01_q7_channel.py` |

#### Health Management (V1 Only)

Each V1 RPC strategy can have a `HealthManager` that tracks success/failure:

- **Exponential Backoff**: After failures, wait before retrying
- **Automatic Recovery**: Periodically attempt to restore failed connections
- **Network Info Refresh**: Refresh local IP addresses after extended periods

A01/B01 devices don't need health management since they only use MQTT (no fallback).

### Protocol Versions

Different device models use different protocol versions:

| Protocol | Devices | Encoding |
|----------|---------|----------|
| V1 | Most vacuum robots | JSON RPC with AES encryption |
| A01 | Dyad, Zeo | DPS-based protocol |
| B01 | Some newer models | DPS-based protocol |
| L01 | Local protocol variant | Binary protocol negotiation |

The protocol layer handles encoding/decoding transparently based on the device's `pv` field.

### Prior API Issues

- Complex Inheritance Hierarchy: Multiple inheritance with classes like RoborockMqttClientV1 inheriting from both RoborockMqttClient and RoborockClientV1

- Callback-Heavy Design: Heavy reliance on callbacks and listeners in RoborockClientV1.on_message_received and the ListenerModel system

- Version Fragmentation: Separate v1 and A01 APIs with different patterns and abstractions

- Mixed Concerns: Classes handle both communication protocols (MQTT/local) and device-specific logic

- Complex Caching: The AttributeCache system with RepeatableTask adds complexity

- Manual Connection Management: Users need to manually set up both MQTT and local clients as shown in the README example

### Design Goals

- Prefer a single unified client that handles both MQTT and local connections internally.

- Home and device discovery (fetching home data and device setup) will be behind a single API.

- Asyncio First: Everything should be asyncio as much as possible, with fewer callbacks.

- The clients should be working in terms of devices. We need to detect capabilities for each device and not expose details about API versions.

- Reliability issues: The current Home Assistant integration has issues with reliability and needs to be simplified. It may be that there are bugs with the exception handling and it's too heavy on the cloud APIs and could benefit from more seamless caching.

### Migration from Legacy APIs

The library previously had:
- Separate `RoborockMqttClientV1` and `RoborockLocalClientV1` classes
- Manual connection management
- Callback-heavy design with `on_message_received`
- Complex inheritance hierarchies

The new design:
- `DeviceManager` handles all connection management
- `V1Channel` automatically manages both MQTT and local
- Asyncio-first with minimal callbacks
- Clear separation of concerns through layers
- Users work with devices, not raw clients


## Implementation Details

### Code Organization

```
roborock/
├── devices/                    # Device management and channels
│   ├── device_manager.py       # High-level device lifecycle
│   ├── transport/              # Module for network connections to devices
│   |   ├── channel.py          # Base Channel interface
│   |   ├── mqtt_channel.py     # MQTT channel implementation
│   |   ├── local_channel.py    # Local TCP channel implementation
│   |   └── ...
│   ├── rpc/                    # Application-level protocol/device-specific glue
│   |   ├── v1_channel.py       # V1 protocol channel with RPC strategies
│   |   ├── a01_channel.py      # A01 protocol helpers
│   |   ├── b01_q7_channel.py   # B01 Q7 protocol helpers
│   |   ├── b01_q10_channel.py  # B01 Q10 protocol helpers
│   |   └── ...
│   └── traits/                 # High-level device-specific command traits
│       └── v1/                 # V1 device traits
│           ├── __init__.py     # Trait initialization
│           ├── clean.py        # Cleaning commands
│           ├── map.py          # Map management
│           └── ...
├── mqtt/                      # MQTT session management
│   ├── session.py             # Base session interface
│   └── roborock_session.py    # MQTT session with idle timeout
├── protocols/                 # Low level protocol encoders/decoders
│   ├── v1_protocol.py         # V1 JSON RPC protocol
│   ├── a01_protocol.py        # A01 protocol
│   ├── b01_q7_protocol.py     # B01 Q7 protocol
│   └── ...
└── data/                      # Data containers and mappings
    ├── containers.py          # Status, HomeData, etc.
    ├── v1/                    # V1-specific data structures
    ├── dyad/                  # Dyad-specific data structures
    ├── zeo/                   # Zeo-specific data structures
    ├── b01_q7/                # B01 Q7-specific data structures
    ├── b01_q10/               # B01 Q10-specific data structures
    └── ...
```

### Threading Model

The library is **asyncio-only** with no threads:

- All I/O is non-blocking using `asyncio`
- No thread synchronization needed (single event loop)
- Callbacks are executed in the event loop
- Use `asyncio.create_task()` for background work

### Error Handling

```mermaid
graph TD
    A[send_command] --> B{Local Available?}
    B -->|Yes| C[Try Local]
    B -->|No| D[Try MQTT]
    C --> E{Success?}
    E -->|Yes| F[Return Result]
    E -->|No| G{Timeout?}
    G -->|Yes| H[Update Health Manager]
    H --> D
    G -->|No| I{Connection Error?}
    I -->|Yes| J[Mark Connection Failed]
    J --> D
    I -->|No| D
    D --> K{Success?}
    K -->|Yes| F
    K -->|No| L[Raise RoborockException]
```

**Exception Types:**

- `RoborockException`: Base exception for all library errors
- `RoborockConnectionException`: Connection-related failures
- `RoborockTimeout`: Command timeout (10 seconds)

### Caching Strategy

To reduce API calls and improve reliability:

1. **Home Data**: Cached on disk, refreshed periodically
2. **Network Info**: Cached for 12 hours
3. **Device Capabilities**: Detected once and cached
4. **MQTT Subscriptions**: Kept alive for 60 seconds (idle timeout)

### Testing

Test structure mirrors the python module structure. For example,
the module `roborock.devices.traits.v1.maps` is tested in the file
`tests/devices/traits/v1/test_maps.py`. Each test file corresponds to a python
module.

The test suite uses mocking extensively to avoid real devices:

- `Mock` and `AsyncMock` for channels and sessions
- Fake message generators (`mqtt_packet.gen_publish()`)
- Snapshot testing for complex data structures
- Time-based tests use small timeouts (10-50ms) for speed


Example test structure:
```python
@pytest.fixture
def mock_mqtt_channel():
    """Mock MQTT channel that simulates responses."""
    channel = AsyncMock(spec=MqttChannel)
    channel.response_queue = []

    async def publish_side_effect(message):
        # Simulate device response
        if channel.response_queue:
            response = channel.response_queue.pop(0)
            await callback(response)

    channel.publish.side_effect = publish_side_effect
    return channel
```