1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
|
# Roborock Devices & Discovery
The devices module provides functionality to discover Roborock devices on the
network. This section documents the full lifecycle of device discovery across
Cloud and Network.
## Usage TL;DR
* **Discovery**: Use `roborock.devices.device_manager.DeviceManager` to get device instances.
* Call `create_device_manager(user_params)` then `await device_manager.get_devices()`.
* **Control**:
* **Vacuums (V1)**: Use `device.v1_properties` to access traits like `status` or `consumables`.
* Call `await trait.refresh()` to update state.
* Use `device.v1_properties.command.send()` for raw commands (start/stop).
* **Washers (A01)**: Use `device.a01_properties` for Dyad/Zeo devices.
* Use `await device.a01_properties.query_values([...])` to get state.
* Use `await device.a01_properties.set_value(protocol, value)` to control.
## Background: Understanding Device Protocols
**The library supports three device protocol versions, each with different capabilities:**
### Protocol Summary
| Protocol | Device Examples | MQTT | Local TCP | Channel Type | Notes |
|----------|----------------|------|-----------|--------------|-------|
| **V1** (`pv=1.0`) | Most vacuum robots (S7, S8, Q5, Q7, etc.) | ✅ | ✅ | `V1Channel` with `RpcChannel` | Prefers local, falls back to MQTT |
| **A01** (`pv=A01`) | Dyad, Zeo washers | ✅ | ❌ | `MqttChannel` + helpers | MQTT only, DPS protocol |
| **B01** (`pv=B01`) | Some newer models | ✅ | ❌ | `MqttChannel` + helpers | MQTT only, DPS protocol |
**Key Point:** The `DeviceManager` automatically detects the protocol version and creates the appropriate channel type. You don't need to handle this manually.
## Internal Architecture
The library is organized into distinct layers, each with a specific responsibility. **Different device protocols use different channel implementations:**
```mermaid
graph TB
subgraph "Application Layer"
User[Application Code]
end
subgraph "Device Management Layer"
DM[DeviceManager<br/>Detects protocol version]
end
subgraph "Device Types by Protocol"
V1Dev[V1 Devices<br/>pv=1.0<br/>Most vacuums]
A01Dev[A01 Devices<br/>pv=A01<br/>Dyad, Zeo]
B01Dev[B01 Devices<br/>pv=B01<br/>Some models]
end
subgraph "Traits Layer"
V1Traits[V1 Traits<br/>Clean, Map, etc.]
A01Traits[A01 Traits<br/>DPS-based]
B01Traits[B01 Traits<br/>DPS-based]
end
subgraph "Channel Layer"
V1C[V1Channel<br/>MQTT + Local]
A01C[A01 send_decoded_command<br/>MQTT only]
B01C[B01 send_decoded_command<br/>MQTT only]
RPC[RpcChannel<br/>Multi-strategy]
MC[MqttChannel<br/>Per-device wrapper]
LC[LocalChannel<br/>TCP :58867]
end
subgraph "Session Layer"
MS[MqttSession<br/>SHARED by all devices<br/>Idle timeout]
LS[LocalSession<br/>Factory]
end
subgraph "Protocol Layer"
V1P[V1 Protocol<br/>JSON RPC + AES]
A01P[A01 Protocol<br/>DPS format]
B01P[B01 Protocol<br/>DPS format]
end
subgraph "Transport Layer"
MQTT[MQTT Broker<br/>Roborock Cloud]
TCP[TCP Socket<br/>Direct to device]
end
User --> DM
DM -->|pv=1.0| V1Dev
DM -->|pv=A01| A01Dev
DM -->|pv=B01| B01Dev
V1Dev --> V1Traits
A01Dev --> A01Traits
B01Dev --> B01Traits
V1Traits --> V1C
A01Traits --> A01C
B01Traits --> B01C
V1C --> RPC
RPC -->|Strategy 1| LC
RPC -->|Strategy 2| MC
A01C --> MC
B01C --> MC
MC --> MS
LC --> LS
MC --> V1P
MC --> A01P
MC --> B01P
LC --> V1P
MS --> MQTT
LC --> TCP
MQTT <--> TCP
style User fill:#e1f5ff
style DM fill:#fff4e1
style V1C fill:#ffe1e1
style RPC fill:#ffe1e1
style MS fill:#e1ffe1
style V1P fill:#f0e1ff
style A01P fill:#f0e1ff
style B01P fill:#f0e1ff
```
### Layer Responsibilities
1. **Device Management Layer**: Detects protocol version (`pv` field) and creates appropriate channels
2. **Device Types**: Different devices based on protocol version (V1, A01, B01)
3. **Traits Layer**: Protocol-specific device capabilities and commands
4. **Channel Layer**: Protocol-specific communication patterns
- **V1**: Full RPC channel with local + MQTT fallback
- **A01/B01**: Helper functions wrapping MqttChannel (MQTT only)
- **MqttChannel**: Per-device wrapper that uses shared `MqttSession`
5. **Session Layer**: Connection pooling and subscription management
- **MqttSession**: **Shared single connection** for all devices
- **LocalSession**: Factory for creating device-specific local connections
6. **Protocol Layer**: Message encoding/decoding for different device versions
7. **Transport Layer**: Low-level MQTT and TCP communication
**Important:** All `MqttChannel` instances share the same `MqttSession`, which maintains a single MQTT connection to the broker. This means:
- Only one TCP connection to the MQTT broker regardless of device count
- Subscription management is centralized with idle timeout optimization
- All devices communicate through device-specific MQTT topics on the shared connection
### Protocol-Specific Architecture
| Protocol | Channel Type | Local Support | RPC Strategy | Use Case |
|----------|-------------|---------------|--------------|----------|
| **V1** (`pv=1.0`) | `V1Channel` with `RpcChannel` | ✅ Yes | Multi-strategy (Local → MQTT) | Most vacuum robots |
| **A01** (`pv=A01`) | `MqttChannel` + helpers | ❌ No | Direct MQTT | Dyad, Zeo washers |
| **B01** (`pv=B01`) | `MqttChannel` + helpers | ❌ No | Direct MQTT | Some newer models |
## Account Setup Internals
### Login
- Login can happen with either email and password or email and sending a code. We
currently prefer email with sending a code -- however the roborock no longer
supports this method of login. In the future we may want to migrate to password
if this login method is no longer supported.
- The Login API provides a `userData` object with information on connecting to the cloud APIs
- This `rriot` data contains per-session information, unique each time you login.
- This contains information used to connect to MQTT
- You get an `-eu` suffix in the API URLs if you are in the eu and `-us` if you are in the us
## Home Data Internals
The `HomeData` includes information about the various devices in the home. We use `v3`
and it is notable that if devices don't show up in the `home_data` response it is likely
that a newer version of the API should be used.
- `products`: This is a list of all of the products you have on your account. These objects are always the same (i.e. a s7 maxv is always the exact same.)
- It only shows the products for devices available on your account
- `devices` and `received_devices`:
- These both share the same objects, but one is for devices that have been shared with you and one is those that are on your account.
- The big things here are (MOST are static):
- `duid`: A unique identifier for your device (this is always the same i think)
- `name`: The name of the device in your app
- `local_key`: The local key that is needed for encoding and decoding messages for the device. This stays the same unless someone sets their vacuum back up.
- `pv`: the protocol version (i.e. 1.0 or A1 or B1)
- `product_id`: The id of the product from the above products list.
- `device_status`: An initial status for some of the data we care about, though this changes on each update.
- `rooms`: The rooms in the home.
- This changes if the user adds a new room or changes its name.
- We have to combine this with the room numbers from `GET_ROOM_MAPPING` on the device
- There is another REST request `get_rooms` that will do the same thing.
- Note: If we cache home_data, we likely need to use `get_rooms` to get rooms fresh
## Connection Implementation
### Connection Flow by Protocol
The connection flow differs based on the device protocol version:
#### V1 Devices (Most Vacuums) - MQTT + Local
```mermaid
sequenceDiagram
participant App as Application
participant DM as DeviceManager
participant V1C as V1Channel
participant RPC as RpcChannel
participant MC as MqttChannel
participant LC as LocalChannel
participant MS as MqttSession
participant Broker as MQTT Broker
participant Device as V1 Vacuum
App->>DM: create_device_manager()
DM->>MS: Create MQTT Session
MS->>Broker: Connect
Broker-->>MS: Connected
App->>DM: get_devices()
Note over DM: Detect pv=1.0
DM->>V1C: Create V1Channel
V1C->>MC: Create MqttChannel
V1C->>LC: Create LocalChannel (deferred)
Note over V1C: Subscribe to device topics
V1C->>MC: subscribe()
MC->>MS: subscribe(topic, callback)
MS->>Broker: SUBSCRIBE
Note over V1C: Fetch network info via MQTT
V1C->>RPC: send_command(GET_NETWORK_INFO)
RPC->>MC: publish(request)
MC->>MS: publish(topic, message)
MS->>Broker: PUBLISH
Broker->>Device: Command
Device->>Broker: Response
Broker->>MS: Message
MS->>MC: callback(message)
MC->>RPC: decoded message
RPC-->>V1C: NetworkInfo
Note over V1C: Connect locally using IP
V1C->>LC: connect()
LC->>Device: TCP Connect :58867
Device-->>LC: Connected
Note over App: Commands prefer local
App->>V1C: send_command(GET_STATUS)
V1C->>RPC: send_command()
RPC->>LC: publish(request) [Try local first]
LC->>Device: Command via TCP
Device->>LC: Response
LC->>RPC: decoded message
RPC-->>App: Status
```
#### A01/B01 Devices (Dyad, Zeo) - MQTT Only
```mermaid
sequenceDiagram
participant App as Application
participant DM as DeviceManager
participant A01 as A01 Traits
participant Helper as send_decoded_command
participant MC as MqttChannel
participant MS as MqttSession
participant Broker as MQTT Broker
participant Device as A01 Device
App->>DM: create_device_manager()
DM->>MS: Create MQTT Session
MS->>Broker: Connect
Broker-->>MS: Connected
App->>DM: get_devices()
Note over DM: Detect pv=A01
DM->>MC: Create MqttChannel
DM->>A01: Create A01 Traits
Note over A01: Subscribe to device topics
A01->>MC: subscribe()
MC->>MS: subscribe(topic, callback)
MS->>Broker: SUBSCRIBE
Note over App: All commands via MQTT
App->>A01: set_power(True)
A01->>Helper: send_decoded_command()
Helper->>MC: subscribe(find_response)
Helper->>MC: publish(request)
MC->>MS: publish(topic, message)
MS->>Broker: PUBLISH
Broker->>Device: Command
Device->>Broker: Response
Broker->>MS: Message
MS->>MC: callback(message)
MC->>Helper: decoded message
Helper-->>App: Result
```
### Key Differences
| Aspect | V1 Devices | A01/B01 Devices |
|--------|------------|-----------------|
| **Protocols** | V1 Protocol (JSON RPC) | DPS Protocol |
| **Transports** | MQTT + Local TCP | MQTT only |
| **Channel Type** | `V1Channel` with `RpcChannel` | `MqttChannel` with helpers |
| **Local Support** | ✅ Yes, preferred | ❌ No |
| **Fallback** | Local → MQTT | N/A |
| **Connection** | Requires network info fetch | Direct MQTT |
| **Examples** | Most vacuum robots | Dyad washers, Zeo models |
### MQTT Connection (All Devices)
- Initial device information must be obtained from MQTT
- For V1 devices, we set up the MQTT device connection before the local device connection
- The `NetworkingInfo` needs to be fetched to get additional information about connecting to the device (e.g., Local IP Address)
- This networking info can be cached to reduce network calls
- MQTT is also the only way to get the device Map
- Incoming and outgoing messages are decoded/encoded using the device `local_key`
- For A01/B01 devices, MQTT is the only transport
### Local Connection (V1 Devices Only)
- We use the `ip` from the `NetworkingInfo` to find the device
- The local connection is preferred for improved latency and reducing load on the cloud servers to avoid rate limiting
- Connections are made using a normal TCP socket on port `58867`
- Incoming and outgoing messages are decoded/encoded using the device `local_key`
- Messages received on the stream may be partially received, so we keep a running buffer as messages are partially decoded
- **Not available for A01/B01 devices**
### RPC Pattern (V1 Devices)
V1 devices use a publish/subscribe model for both MQTT and local connections, with an RPC abstraction on top:
```mermaid
graph LR
subgraph "RPC Layer"
A[send_command] -->|1. Create request| B[Encoder]
B -->|2. Subscribe for response| C[Channel.subscribe]
B -->|3. Publish request| D[Channel.publish]
C -->|4. Wait for match| E[find_response callback]
E -->|5. Match request_id| F[Future.set_result]
F -->|6. Return| G[Command Result]
end
subgraph "Channel Layer"
C --> H[Subscription Map]
D --> I[Transport]
I --> J[Device]
J --> K[Incoming Messages]
K --> H
H --> E
end
```
**Key Design Points:**
1. **Temporary Subscriptions**: Each RPC creates a temporary subscription that matches the request ID
2. **Subscription Reuse**: `MqttSession` keeps subscriptions alive for 60 seconds (or idle timeout) to enable reuse during command bursts
3. **Timeout Handling**: Commands timeout after 10 seconds if no response is received
4. **Multiple Strategies**: `V1Channel` tries local first, then falls back to MQTT if local fails
## Class Design & Components
### Current Architecture
The current design separates concerns into distinct layers:
```mermaid
classDiagram
class Channel {
<<abstract>>
+subscribe(callback) Callable
+publish(message)
+is_connected() bool
}
class MqttChannel {
-MqttSession session
-duid: str
-local_key: str
+subscribe(callback)
+publish(message)
}
class LocalChannel {
-host: str
-transport: Transport
-local_key: str
+connect()
+subscribe(callback)
+publish(message)
+close()
}
class V1Channel {
-MqttChannel mqtt_channel
-LocalChannel local_channel
-RpcChannel rpc_channel
+send_command(method, params)
+subscribe(callback)
}
class RpcChannel {
-List~RpcStrategy~ strategies
+send_command(method, params)
}
class RpcStrategy {
+name: str
+channel: Channel
+encoder: Callable
+decoder: Callable
+health_manager: HealthManager
}
class MqttSession {
-Client client
-dict listeners
-dict idle_timers
+subscribe(topic, callback)
+publish(topic, payload)
+close()
}
Channel <|-- MqttChannel
Channel <|-- LocalChannel
Channel <|-- V1Channel
MqttChannel --> MqttSession
V1Channel --> MqttChannel
V1Channel --> LocalChannel
V1Channel --> RpcChannel
RpcChannel --> RpcStrategy
RpcStrategy --> Channel
```
### Key Components
#### Channel Interface
The `Channel` abstraction provides a uniform interface for both MQTT and local connections:
- **`subscribe(callback)`**: Register a callback for incoming messages
- **`publish(message)`**: Send a message to the device
- **`is_connected`**: Check connection status
This abstraction allows the RPC layer to work identically over both transports.
#### MqttSession (Shared Across All Devices)
The `MqttSession` manages a **single shared MQTT connection** for all devices:
- **Single Connection**: Only one TCP connection to the MQTT broker, regardless of device count
- **Per-Device Topics**: Each device communicates via its own MQTT topics (e.g., `rr/m/i/{user}/{username}/{duid}`)
- **Subscription Pooling**: Multiple callbacks can subscribe to the same topic
- **Idle Timeout**: Keeps subscriptions alive for 10 seconds after the last callback unsubscribes (enables reuse during command bursts)
- **Reconnection**: Automatically reconnects and re-establishes all subscriptions on connection loss
- **Thread-Safe**: Uses asyncio primitives for safe concurrent access
**Efficiency**: Creating 5 devices means 5 `MqttChannel` instances but only 1 `MqttSession` and 1 MQTT broker connection.
#### MqttChannel (Per-Device Wrapper)
Each device gets its own `MqttChannel` instance that:
- Wraps the shared `MqttSession`
- Manages device-specific topics (publish to `rr/m/i/.../duid`, subscribe to `rr/m/o/.../duid`)
- Handles protocol-specific encoding/decoding with the device's `local_key`
- Provides the same `Channel` interface as `LocalChannel`
#### RpcChannel with Multiple Strategies (V1 Only)
The `RpcChannel` implements the request/response pattern over pub/sub channels and is **only used by V1 devices**:
```python
# Example: V1Channel tries local first, then MQTT
strategies = [
RpcStrategy(name="local", channel=local_channel, ...),
RpcStrategy(name="mqtt", channel=mqtt_channel, ...),
]
rpc_channel = RpcChannel(strategies)
```
For each V1 command:
1. Try the first strategy (local)
2. If it fails, try the next strategy (MQTT)
3. Return the first successful result
**A01/B01 devices** don't use `RpcChannel`. Instead, they use helper functions (`send_decoded_command`) that directly wrap `MqttChannel`.
#### Protocol-Specific Channel Architecture
| Component | V1 Devices | A01/B01 Devices |
|-----------|------------|-----------------|
| **Channel Class** | `V1Channel` | `MqttChannel` directly |
| **RPC Abstraction** | `RpcChannel` with strategies | Helper functions |
| **Strategy Pattern** | ✅ Multi-strategy (Local → MQTT) | ❌ Direct MQTT only |
| **Health Manager** | ✅ Tracks local/MQTT health | ❌ Not needed |
| **Code Location** | `v1_channel.py` | `a01_channel.py`, `b01_q7_channel.py` |
#### Health Management (V1 Only)
Each V1 RPC strategy can have a `HealthManager` that tracks success/failure:
- **Exponential Backoff**: After failures, wait before retrying
- **Automatic Recovery**: Periodically attempt to restore failed connections
- **Network Info Refresh**: Refresh local IP addresses after extended periods
A01/B01 devices don't need health management since they only use MQTT (no fallback).
### Protocol Versions
Different device models use different protocol versions:
| Protocol | Devices | Encoding |
|----------|---------|----------|
| V1 | Most vacuum robots | JSON RPC with AES encryption |
| A01 | Dyad, Zeo | DPS-based protocol |
| B01 | Some newer models | DPS-based protocol |
| L01 | Local protocol variant | Binary protocol negotiation |
The protocol layer handles encoding/decoding transparently based on the device's `pv` field.
### Prior API Issues
- Complex Inheritance Hierarchy: Multiple inheritance with classes like RoborockMqttClientV1 inheriting from both RoborockMqttClient and RoborockClientV1
- Callback-Heavy Design: Heavy reliance on callbacks and listeners in RoborockClientV1.on_message_received and the ListenerModel system
- Version Fragmentation: Separate v1 and A01 APIs with different patterns and abstractions
- Mixed Concerns: Classes handle both communication protocols (MQTT/local) and device-specific logic
- Complex Caching: The AttributeCache system with RepeatableTask adds complexity
- Manual Connection Management: Users need to manually set up both MQTT and local clients as shown in the README example
### Design Goals
- Prefer a single unified client that handles both MQTT and local connections internally.
- Home and device discovery (fetching home data and device setup) will be behind a single API.
- Asyncio First: Everything should be asyncio as much as possible, with fewer callbacks.
- The clients should be working in terms of devices. We need to detect capabilities for each device and not expose details about API versions.
- Reliability issues: The current Home Assistant integration has issues with reliability and needs to be simplified. It may be that there are bugs with the exception handling and it's too heavy on the cloud APIs and could benefit from more seamless caching.
### Migration from Legacy APIs
The library previously had:
- Separate `RoborockMqttClientV1` and `RoborockLocalClientV1` classes
- Manual connection management
- Callback-heavy design with `on_message_received`
- Complex inheritance hierarchies
The new design:
- `DeviceManager` handles all connection management
- `V1Channel` automatically manages both MQTT and local
- Asyncio-first with minimal callbacks
- Clear separation of concerns through layers
- Users work with devices, not raw clients
## Implementation Details
### Code Organization
```
roborock/
├── devices/ # Device management and channels
│ ├── device_manager.py # High-level device lifecycle
│ ├── transport/ # Module for network connections to devices
│ | ├── channel.py # Base Channel interface
│ | ├── mqtt_channel.py # MQTT channel implementation
│ | ├── local_channel.py # Local TCP channel implementation
│ | └── ...
│ ├── rpc/ # Application-level protocol/device-specific glue
│ | ├── v1_channel.py # V1 protocol channel with RPC strategies
│ | ├── a01_channel.py # A01 protocol helpers
│ | ├── b01_q7_channel.py # B01 Q7 protocol helpers
│ | ├── b01_q10_channel.py # B01 Q10 protocol helpers
│ | └── ...
│ └── traits/ # High-level device-specific command traits
│ └── v1/ # V1 device traits
│ ├── __init__.py # Trait initialization
│ ├── clean.py # Cleaning commands
│ ├── map.py # Map management
│ └── ...
├── mqtt/ # MQTT session management
│ ├── session.py # Base session interface
│ └── roborock_session.py # MQTT session with idle timeout
├── protocols/ # Low level protocol encoders/decoders
│ ├── v1_protocol.py # V1 JSON RPC protocol
│ ├── a01_protocol.py # A01 protocol
│ ├── b01_q7_protocol.py # B01 Q7 protocol
│ └── ...
└── data/ # Data containers and mappings
├── containers.py # Status, HomeData, etc.
├── v1/ # V1-specific data structures
├── dyad/ # Dyad-specific data structures
├── zeo/ # Zeo-specific data structures
├── b01_q7/ # B01 Q7-specific data structures
├── b01_q10/ # B01 Q10-specific data structures
└── ...
```
### Threading Model
The library is **asyncio-only** with no threads:
- All I/O is non-blocking using `asyncio`
- No thread synchronization needed (single event loop)
- Callbacks are executed in the event loop
- Use `asyncio.create_task()` for background work
### Error Handling
```mermaid
graph TD
A[send_command] --> B{Local Available?}
B -->|Yes| C[Try Local]
B -->|No| D[Try MQTT]
C --> E{Success?}
E -->|Yes| F[Return Result]
E -->|No| G{Timeout?}
G -->|Yes| H[Update Health Manager]
H --> D
G -->|No| I{Connection Error?}
I -->|Yes| J[Mark Connection Failed]
J --> D
I -->|No| D
D --> K{Success?}
K -->|Yes| F
K -->|No| L[Raise RoborockException]
```
**Exception Types:**
- `RoborockException`: Base exception for all library errors
- `RoborockConnectionException`: Connection-related failures
- `RoborockTimeout`: Command timeout (10 seconds)
### Caching Strategy
To reduce API calls and improve reliability:
1. **Home Data**: Cached on disk, refreshed periodically
2. **Network Info**: Cached for 12 hours
3. **Device Capabilities**: Detected once and cached
4. **MQTT Subscriptions**: Kept alive for 60 seconds (idle timeout)
### Testing
Test structure mirrors the python module structure. For example,
the module `roborock.devices.traits.v1.maps` is tested in the file
`tests/devices/traits/v1/test_maps.py`. Each test file corresponds to a python
module.
The test suite uses mocking extensively to avoid real devices:
- `Mock` and `AsyncMock` for channels and sessions
- Fake message generators (`mqtt_packet.gen_publish()`)
- Snapshot testing for complex data structures
- Time-based tests use small timeouts (10-50ms) for speed
Example test structure:
```python
@pytest.fixture
def mock_mqtt_channel():
"""Mock MQTT channel that simulates responses."""
channel = AsyncMock(spec=MqttChannel)
channel.response_queue = []
async def publish_side_effect(message):
# Simulate device response
if channel.response_queue:
response = channel.response_queue.pop(0)
await callback(response)
channel.publish.side_effect = publish_side_effect
return channel
```
|