1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
|
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.
import ast
import datetime
import logging
import warnings
import dask.array as da
import h5py
import numpy as np
from packaging.version import Version
from rsciio._docstrings import SHOW_PROGRESSBAR_DOC
from rsciio.utils.tools import ensure_unicode
version = "3.3"
default_version = Version(version)
not_valid_format = "The file is not a valid HyperSpy hdf5 file"
_logger = logging.getLogger(__name__)
# Functions to flatten and unflatten the data to allow for storing
# ragged arrays in hdf5 with dimensionality higher than 1
def flatten_data(x, is_hdf5=False):
new_data = np.empty(shape=x.shape, dtype=object)
shapes = np.empty(shape=x.shape, dtype=object)
for i in np.ndindex(x.shape):
data_ = np.array(x[i]).ravel()
if np.issubdtype(data_.dtype, np.dtype("U")):
if is_hdf5:
# h5py doesn't support numpy unicode dtype, convert to
# compatible dtype
new_data[i] = data_.astype(h5py.string_dtype())
else:
# Convert to list to save ragged array of array with string dtype
new_data[i] = data_.tolist()
else:
new_data[i] = data_
shapes[i] = np.array(np.array(x[i]).shape)
return new_data, shapes
def unflatten_data(data, shape, is_hdf5=False):
new_data = np.empty(shape=data.shape, dtype=object)
for i in np.ndindex(new_data.shape):
try:
# For hspy file, ragged array of string are saving with
# "h5py.string_dtype()" type and we need to convert it back
# to numpy unicode type. The only to know when this needs to be
# done is look at the numpy metadata
# This numpy feature is "not well supported in numpy"
# https://numpy.org/doc/stable/reference/generated/numpy.dtype.metadata.html
convert_to_unicode = (
is_hdf5
and data.dtype is not None
and data.dtype.metadata.get("vlen") is not None
and issubclass(data.dtype.metadata["vlen"].metadata.get("vlen"), str)
)
except (AttributeError, KeyError):
# AttributeError in case `dtype.metadata`` is None (most of the time)
# KeyError in case "vlen" is not a key
convert_to_unicode = False
data_ = data[i].astype("U") if convert_to_unicode else data[i]
new_data[i] = np.reshape(np.array(data_), shape[i])
return new_data
# ---------------------------------
def get_signal_chunks(shape, dtype, signal_axes=None, target_size=1e6):
"""
Function that calculates chunks for the signal, preferably at least one
chunk per signal space.
Parameters
----------
shape : tuple
The shape of the dataset to be stored / chunked.
dtype : {dtype, string}
The numpy dtype of the data.
signal_axes : {None, iterable of ints}
The axes defining "signal space" of the dataset. If None, the default
h5py chunking is performed.
target_size : int
The target number of bytes for one chunk
"""
typesize = np.dtype(dtype).itemsize
if shape == (0,) or signal_axes is None:
# enable autochunking from h5py
return True
# largely based on the guess_chunk in h5py
bytes_per_signal = np.prod([shape[i] for i in signal_axes]) * typesize
signals_per_chunk = int(np.floor_divide(target_size, bytes_per_signal))
navigation_axes = tuple(i for i in range(len(shape)) if i not in signal_axes)
num_nav_axes = len(navigation_axes)
num_signals = np.prod([shape[i] for i in navigation_axes])
if signals_per_chunk < 2 or num_nav_axes == 0:
# signal is larger than chunk max
chunks = [s if i in signal_axes else 1 for i, s in enumerate(shape)]
return tuple(chunks)
elif signals_per_chunk > num_signals:
return shape
else:
# signal is smaller than chunk max
# Index of axes with size smaller than required to make all chunks equal
small_idx = []
# Sizes of axes with size smaller than required to make all chunks equal
small_sizes = []
iterate = True
while iterate:
iterate = False
# Calculate the size of the chunks of the axes not in `small_idx`
# The process is iterative because `nav_axes_chunks` can be bigger
# than some axes sizes. If that is the case, the value must be
# recomputed at the next iteration after having added the "offending"
# axes to `small_idx`
nav_axes_chunks = int(
np.floor(
(signals_per_chunk / np.prod(small_sizes))
** (1 / (num_nav_axes - len(small_sizes)))
)
)
for index, size in enumerate(shape):
if (
index not in (list(signal_axes) + small_idx)
and size < nav_axes_chunks
):
small_idx.append(index)
small_sizes.append(size)
iterate = True
chunks = [
s if i in signal_axes or i in small_idx else nav_axes_chunks
for i, s in enumerate(shape)
]
return tuple(int(x) for x in chunks)
class HierarchicalReader:
"""A generic Reader class for reading data from hierarchical file types."""
_file_type = ""
_is_hdf5 = False
def __init__(self, file):
"""
Initializes a general reader for hierarchical signals.
Parameters
----------
file: str
A file to be read.
"""
self.file = file
# Getting version also check that this is a hyperspy format
self.version = self.get_format_version()
self.Dataset = None
self.Group = None
if self.version > Version(version):
warnings.warn(
"This file was written using a newer version of the "
f"HyperSpy {self._file_type} file format. I will attempt to "
"load it, but, if I fail, it is likely that I will be more "
"successful at this and other tasks if you upgrade me."
)
def get_format_version(self):
"""Return the format version."""
if "file_format_version" in self.file.attrs:
version = self.file.attrs["file_format_version"]
if isinstance(version, bytes):
version = version.decode()
if isinstance(version, float):
version = str(round(version, 2))
elif "Experiments" in self.file:
# Chances are that this is a HSpy hdf5 file version 1.0
version = "1.0"
elif "Analysis" in self.file:
# Starting version 2.0 we have "Analysis" field as well
version = "2.0"
else:
raise IOError(not_valid_format)
return Version(version)
def read(self, lazy):
"""
Read all data, metadata, models.
Parameters
----------
lazy : bool
Return data as lazy signal.
Raises
------
IOError
Raise an IOError when the file can't be read, if the file
doesn't follow hspy format specification, etc.
Returns
-------
list of dict
A list of dictionary, which can be used to create a hspy signal.
"""
models_with_signals = []
standalone_models = []
if "Analysis/models" in self.file:
try:
m_gr = self.file["Analysis/models"]
for model_name in m_gr:
if "_signal" in m_gr[model_name].attrs:
key = m_gr[model_name].attrs["_signal"]
# del m_gr[model_name].attrs['_signal']
res = self._group2dict(m_gr[model_name], lazy=lazy)
del res["_signal"]
models_with_signals.append((key, {model_name: res}))
else:
standalone_models.append(
{model_name: self._group2dict(m_gr[model_name], lazy=lazy)}
)
except TypeError:
raise IOError(not_valid_format)
experiments = []
exp_dict_list = []
if "Experiments" in self.file:
for ds in self.file["Experiments"]:
if isinstance(self.file["Experiments"][ds], self.Group):
if "data" in self.file["Experiments"][ds]:
experiments.append(ds)
# Parse the file
for experiment in experiments:
exg = self.file["Experiments"][experiment]
exp = self.group2signaldict(exg, lazy)
# assign correct models, if found:
_tmp = {}
for key, _dict in reversed(models_with_signals):
if key == exg.name:
_tmp.update(_dict)
models_with_signals.remove((key, _dict))
exp["models"] = _tmp
exp_dict_list.append(exp)
for _, m in models_with_signals:
standalone_models.append(m)
exp_dict_list.extend(standalone_models)
if not len(exp_dict_list):
raise IOError(f"This is not a valid {self._file_type} file.")
return exp_dict_list
def _read_array(self, group, dataset_key):
# This is a workaround for the lack of support for n-d ragged array
# in h5py and zarr. There is work in progress for implementation in zarr:
# https://github.com/zarr-developers/zarr-specs/issues/62 which may be
# relevant to implement here when available
data = group[dataset_key]
key = f"_ragged_shapes_{dataset_key}"
if "ragged_shapes" in group:
# For file saved with rosettaSciIO <= 0.1
# rename from `ragged_shapes` to `_ragged_shapes_{key}` in v3.3
key = "ragged_shapes"
if key in group:
ragged_shape = group[key]
# Use same chunks as data so that apply_gufunc doesn't rechunk
# Reduces the transfer of data between workers which
# significantly improves performance for distributed loading
data = da.from_array(data, chunks=data.chunks)
shapes = da.from_array(ragged_shape, chunks=data.chunks)
data = da.apply_gufunc(
unflatten_data,
"(),()->()",
data,
shapes,
is_hdf5=self._is_hdf5,
output_dtypes=object,
)
return data
def group2signaldict(self, group, lazy=False):
"""
Reads a h5py/zarr group and returns a signal dictionary.
Parameters
----------
group : :py:class:`h5py.Group` or :py:class:`zarr.hierarchy.Group`
A group following hspy specification.
lazy : bool, optional
Return the data as dask array. The default is False.
Raises
------
IOError
Raise an IOError when the group can't be read, if the group
doesn't follow hspy format specification, etc.
"""
if self.version < Version("1.2"):
metadata = "mapped_parameters"
original_metadata = "original_parameters"
else:
metadata = "metadata"
original_metadata = "original_metadata"
exp = {
"metadata": self._group2dict(group[metadata], lazy=lazy),
"original_metadata": self._group2dict(group[original_metadata], lazy=lazy),
}
if "attributes" in group:
# RosettaSciIO version is > 0.1
exp["attributes"] = self._group2dict(group["attributes"], lazy=lazy)
else:
exp["attributes"] = {}
if "package" in group.attrs:
# HyperSpy version is >= 1.5
exp["package"] = group.attrs["package"]
exp["package_version"] = group.attrs["package_version"]
else:
# Prior to v1.4 we didn't store the package information. Since there
# were already external package we cannot assume any package provider so
# we leave this empty.
exp["package"] = ""
exp["package_version"] = ""
data = self._read_array(group, "data")
if lazy:
if not isinstance(data, da.Array):
data = da.from_array(data, chunks=data.chunks)
exp["attributes"]["_lazy"] = True
else:
if isinstance(data, da.Array):
data = data.compute()
data = np.asanyarray(data)
exp["attributes"]["_lazy"] = False
exp["data"] = data
axes = []
for i in range(len(exp["data"].shape)):
try:
axes.append(self._group2dict(group[f"axis-{i}"]))
axis = axes[-1]
for key, item in axis.items():
if isinstance(item, np.bool_):
axis[key] = bool(item)
else:
axis[key] = ensure_unicode(item)
except KeyError:
break
if len(axes) != len(exp["data"].shape): # broke from the previous loop
try:
axes = [
i
for k, i in sorted(
iter(
self._group2dict(
group["_list_" + str(len(exp["data"].shape)) + "_axes"],
lazy=lazy,
).items()
)
)
]
except KeyError:
raise IOError(not_valid_format)
exp["axes"] = axes
if "learning_results" in group.keys():
exp["attributes"]["learning_results"] = self._group2dict(
group["learning_results"], lazy=lazy
)
if "peak_learning_results" in group.keys():
exp["attributes"]["peak_learning_results"] = self._group2dict(
group["peak_learning_results"], lazy=lazy
)
# If the title was not defined on writing the Experiment is
# then called __unnamed__. The next "if" simply sets the title
# back to the empty string
if "General" in exp["metadata"] and "title" in exp["metadata"]["General"]:
if "__unnamed__" == exp["metadata"]["General"]["title"]:
exp["metadata"]["General"]["title"] = ""
if self.version < Version("1.1"):
# Load the decomposition results written with the old name,
# mva_results
if "mva_results" in group.keys():
exp["attributes"]["learning_results"] = self._group2dict(
group["mva_results"], lazy=lazy
)
if "peak_mva_results" in group.keys():
exp["attributes"]["peak_learning_results"] = self._group2dict(
group["peak_mva_results"], lazy=lazy
)
# Replace the old signal and name keys with their current names
if "signal" in exp["metadata"]:
if "Signal" not in exp["metadata"]:
exp["metadata"]["Signal"] = {}
exp["metadata"]["Signal"]["signal_type"] = exp["metadata"]["signal"]
del exp["metadata"]["signal"]
if "name" in exp["metadata"]:
if "General" not in exp["metadata"]:
exp["metadata"]["General"] = {}
exp["metadata"]["General"]["title"] = exp["metadata"]["name"]
del exp["metadata"]["name"]
if self.version < Version("1.2"):
if "_internal_parameters" in exp["metadata"]:
exp["metadata"]["_HyperSpy"] = exp["metadata"]["_internal_parameters"]
del exp["metadata"]["_internal_parameters"]
if "stacking_history" in exp["metadata"]["_HyperSpy"]:
exp["metadata"]["_HyperSpy"]["Stacking_history"] = exp["metadata"][
"_HyperSpy"
]["stacking_history"]
del exp["metadata"]["_HyperSpy"]["stacking_history"]
if "folding" in exp["metadata"]["_HyperSpy"]:
exp["metadata"]["_HyperSpy"]["Folding"] = exp["metadata"][
"_HyperSpy"
]["folding"]
del exp["metadata"]["_HyperSpy"]["folding"]
if "Variance_estimation" in exp["metadata"]:
if "Noise_properties" not in exp["metadata"]:
exp["metadata"]["Noise_properties"] = {}
exp["metadata"]["Noise_properties"]["Variance_linear_model"] = exp[
"metadata"
]["Variance_estimation"]
del exp["metadata"]["Variance_estimation"]
if "TEM" in exp["metadata"]:
if "Acquisition_instrument" not in exp["metadata"]:
exp["metadata"]["Acquisition_instrument"] = {}
exp["metadata"]["Acquisition_instrument"]["TEM"] = exp["metadata"][
"TEM"
]
del exp["metadata"]["TEM"]
tem = exp["metadata"]["Acquisition_instrument"]["TEM"]
if "EELS" in tem:
if "dwell_time" in tem:
tem["EELS"]["dwell_time"] = tem["dwell_time"]
del tem["dwell_time"]
if "dwell_time_units" in tem:
tem["EELS"]["dwell_time_units"] = tem["dwell_time_units"]
del tem["dwell_time_units"]
if "exposure" in tem:
tem["EELS"]["exposure"] = tem["exposure"]
del tem["exposure"]
if "exposure_units" in tem:
tem["EELS"]["exposure_units"] = tem["exposure_units"]
del tem["exposure_units"]
if "Detector" not in tem:
tem["Detector"] = {}
tem["Detector"] = tem["EELS"]
del tem["EELS"]
if "EDS" in tem:
if "Detector" not in tem:
tem["Detector"] = {}
if "EDS" not in tem["Detector"]:
tem["Detector"]["EDS"] = {}
tem["Detector"]["EDS"] = tem["EDS"]
del tem["EDS"]
del tem
if "SEM" in exp["metadata"]:
if "Acquisition_instrument" not in exp["metadata"]:
exp["metadata"]["Acquisition_instrument"] = {}
exp["metadata"]["Acquisition_instrument"]["SEM"] = exp["metadata"][
"SEM"
]
del exp["metadata"]["SEM"]
sem = exp["metadata"]["Acquisition_instrument"]["SEM"]
if "EDS" in sem:
if "Detector" not in sem:
sem["Detector"] = {}
if "EDS" not in sem["Detector"]:
sem["Detector"]["EDS"] = {}
sem["Detector"]["EDS"] = sem["EDS"]
del sem["EDS"]
del sem
if (
"Sample" in exp["metadata"]
and "Xray_lines" in exp["metadata"]["Sample"]
):
exp["metadata"]["Sample"]["xray_lines"] = exp["metadata"]["Sample"][
"Xray_lines"
]
del exp["metadata"]["Sample"]["Xray_lines"]
for key in ["title", "date", "time", "original_filename"]:
if key in exp["metadata"]:
if "General" not in exp["metadata"]:
exp["metadata"]["General"] = {}
exp["metadata"]["General"][key] = exp["metadata"][key]
del exp["metadata"][key]
for key in ["record_by", "signal_origin", "signal_type"]:
if key in exp["metadata"]:
if "Signal" not in exp["metadata"]:
exp["metadata"]["Signal"] = {}
exp["metadata"]["Signal"][key] = exp["metadata"][key]
del exp["metadata"][key]
if self.version < Version("3.0"):
if "Acquisition_instrument" in exp["metadata"]:
# Move tilt_stage to Stage.tilt_alpha
# Move exposure time to Detector.Camera.exposure_time
if "TEM" in exp["metadata"]["Acquisition_instrument"]:
tem = exp["metadata"]["Acquisition_instrument"]["TEM"]
exposure = None
if "tilt_stage" in tem:
tem["Stage"] = {"tilt_alpha": tem["tilt_stage"]}
del tem["tilt_stage"]
if "exposure" in tem:
exposure = "exposure"
# Digital_micrograph plugin was parsing to 'exposure_time'
# instead of 'exposure': need this to be compatible with
# previous behaviour
if "exposure_time" in tem:
exposure = "exposure_time"
if exposure is not None:
if "Detector" not in tem:
tem["Detector"] = {"Camera": {"exposure": tem[exposure]}}
tem["Detector"]["Camera"] = {"exposure": tem[exposure]}
del tem[exposure]
# Move tilt_stage to Stage.tilt_alpha
if "SEM" in exp["metadata"]["Acquisition_instrument"]:
sem = exp["metadata"]["Acquisition_instrument"]["SEM"]
if "tilt_stage" in sem:
sem["Stage"] = {"tilt_alpha": sem["tilt_stage"]}
del sem["tilt_stage"]
return exp
def _group2dict(self, group, dictionary=None, lazy=False):
if dictionary is None:
dictionary = {}
for key, value in group.attrs.items():
if isinstance(value, bytes):
value = value.decode()
if isinstance(value, (np.bytes_, str)):
if value == "_None_":
value = None
elif isinstance(value, np.bool_):
value = bool(value)
elif isinstance(value, np.ndarray) and value.dtype.char == "S":
# Convert strings to unicode
value = value.astype("U")
if value.dtype.str.endswith("U1"):
value = value.tolist()
# skip signals - these are handled below.
if key.startswith("_sig_"):
pass
elif key.startswith("_list_empty_"):
dictionary[key[len("_list_empty_") :]] = []
elif key.startswith("_tuple_empty_"):
dictionary[key[len("_tuple_empty_") :]] = ()
elif key.startswith("_bs_"):
dictionary[key[len("_bs_") :]] = value.tobytes()
# The following two elif stataments enable reading date and time from
# v < 2 of HyperSpy's metadata specifications
elif key.startswith("_datetime_date"):
date_iso = datetime.date(
*ast.literal_eval(value[value.index("(") :])
).isoformat()
dictionary[key.replace("_datetime_", "")] = date_iso
elif key.startswith("_datetime_time"):
date_iso = datetime.time(
*ast.literal_eval(value[value.index("(") :])
).isoformat()
dictionary[key.replace("_datetime_", "")] = date_iso
else:
dictionary[key] = value
if not isinstance(group, self.Dataset):
for key in group.keys():
if key.startswith("_ragged_shapes_"):
# array used to parse ragged array, need to skip it
# otherwise, it will wrongly read kwargs when reading
# variable length markers as they uses ragged arrays
pass
elif key.startswith("_sig_"):
dictionary[key] = self.group2signaldict(group[key])
elif isinstance(group[key], self.Dataset):
dat = self._read_array(group, key)
kn = key
if key.startswith("_list_"):
ans = self._parse_iterable(dat)
ans = ans.tolist()
kn = key[6:]
elif key.startswith("_tuple_"):
ans = self._parse_iterable(dat)
ans = tuple(ans.tolist())
kn = key[7:]
elif dat.dtype.char == "S":
ans = np.array(dat)
try:
ans = ans.astype("U")
except UnicodeDecodeError:
# There are some strings that must stay in binary,
# for example dill pickles. This will obviously also
# let "wrong" binary string fail somewhere else...
pass
elif lazy:
ans = da.from_array(dat, chunks=dat.chunks)
else:
ans = np.array(dat)
dictionary[kn] = ans
elif key.startswith("_hspy_AxesManager_"):
dictionary[key] = [
i
for k, i in sorted(
iter(self._group2dict(group[key], lazy=lazy).items())
)
]
elif key.startswith("_list_"):
dictionary[key[7 + key[6:].find("_") :]] = [
i
for k, i in sorted(
iter(self._group2dict(group[key], lazy=lazy).items())
)
]
elif key.startswith("_tuple_"):
dictionary[key[8 + key[7:].find("_") :]] = tuple(
[
i
for k, i in sorted(
iter(self._group2dict(group[key], lazy=lazy).items())
)
]
)
else:
dictionary[key] = {}
self._group2dict(group[key], dictionary[key], lazy=lazy)
return dictionary
@staticmethod
def _parse_iterable(data):
if h5py.check_string_dtype(data.dtype) and hasattr(data, "asstr"):
# h5py 3.0 and newer
# https://docs.h5py.org/en/3.0.0/strings.html
data = data.asstr()[:]
return np.array(data)
class HierarchicalWriter:
"""
An object used to simplify and organize the process for writing a
Hierarchical signal, such as hspy/zspy format.
"""
target_size = 1e6
_unicode_kwds = None
_is_hdf5 = False
def __init__(self, file, signal, group, **kwds):
"""Initialize a generic file writer for hierachical data storage types.
Parameters
----------
file: str
The file where the signal is to be saved
signal: BaseSignal
A BaseSignal to be saved
group: Group
A group to where the experimental data will be saved.
kwds:
Any additional keywords used for saving the data.
"""
self.file = file
self.signal = signal
self.group = group
self.Dataset = None
self.Group = None
self.kwds = kwds
@staticmethod
def _get_object_dset(*args, **kwargs): # pragma: no cover
raise NotImplementedError("This method must be implemented by subclasses.")
@staticmethod
def _store_data(*arg): # pragma: no cover
raise NotImplementedError("This method must be implemented by subclasses.")
@classmethod
def overwrite_dataset(
cls,
group,
data,
key,
signal_axes=None,
chunks=None,
show_progressbar=True,
**kwds,
):
"""
Overwrites a dataset into a hierarchical structure following the h5py
API.
Parameters
----------
group : :py:class:`zarr.hierarchy.Group` or :py:class:`h5py.Group`
The group to write the data to.
data : Array-like
The data to be written.
key : str
The key for the dataset.
signal_axes : tuple
The indexes of the signal axes.
chunks : tuple, None
The chunks for the dataset. If ``None`` and saving lazy signal,
the chunks of the dask array will be used otherwise the chunks
will be determined by the
:py:func:`~.io_plugins._hierarchical.get_signal_chunks` function.
%s
kwds : dict
Any additional keywords for to be passed to the
:py:meth:`h5py.Group.require_dataset` or
:py:meth:`zarr.hierarchy.Group.require_dataset` method.
""" % SHOW_PROGRESSBAR_DOC
if chunks is None:
if isinstance(data, da.Array):
# For lazy dataset, by default, we use the current dask chunking
chunks = tuple([c[0] for c in data.chunks])
else:
# If signal_axes=None, use automatic h5py chunking, otherwise
# optimise the chunking to contain at least one signal per chunk
chunks = get_signal_chunks(
data.shape, data.dtype, signal_axes, cls.target_size
)
if np.issubdtype(data.dtype, np.dtype("U")):
# Saving numpy unicode type is not supported in h5py
data = data.astype(np.dtype("S"))
if data.dtype != np.dtype("O"):
got_data = False
while not got_data:
try:
these_kwds = kwds.copy()
these_kwds.update(
dict(
shape=data.shape,
dtype=data.dtype,
exact=True,
chunks=chunks,
)
)
# If chunks is True, the `chunks` attribute of `dset` below
# contains the chunk shape guessed by h5py
dset = group.require_dataset(key, **these_kwds)
got_data = True
except TypeError:
# if the shape or dtype/etc do not match,
# we delete the old one and create new in the next loop run
del group[key]
_logger.info(f"Chunks used for saving: {chunks}")
if data.dtype == np.dtype("O"):
if isinstance(data, da.Array):
new_data, shapes = da.apply_gufunc(
flatten_data,
"()->(),()",
data,
is_hdf5=cls._is_hdf5,
output_dtypes=[object, object],
allow_rechunk=False,
)
else:
new_data, shapes = flatten_data(data, is_hdf5=cls._is_hdf5)
dset = cls._get_object_dset(group, new_data, key, chunks, **kwds)
shape_dset = cls._get_object_dset(
group, shapes, f"_ragged_shapes_{key}", chunks, dtype=int, **kwds
)
cls._store_data(
(new_data, shapes),
(dset, shape_dset),
group,
(key, f"_ragged_shapes_{key}"),
(chunks, chunks),
show_progressbar,
)
else:
cls._store_data(data, dset, group, key, chunks, show_progressbar)
def write(self):
self.write_signal(self.signal, self.group, **self.kwds)
def write_signal(
self,
signal,
group,
write_dataset=True,
chunks=None,
show_progressbar=True,
**kwds,
):
"""Writes a signal dict to a hdf5/zarr group"""
group.attrs.update(signal["package_info"])
for i, axis_dict in enumerate(signal["axes"]):
group_name = f"axis-{i}"
# delete existing group in case the file have been open in 'a' mode
# and we are saving a different type of axis, to avoid having
# incompatible axis attributes from previously saved axis.
if group_name in group.keys():
del group[group_name]
coord_group = group.create_group(group_name)
self.dict2group(axis_dict, coord_group, **kwds)
mapped_par = group.require_group("metadata")
metadata_dict = signal["metadata"]
if write_dataset:
self.overwrite_dataset(
group,
signal["data"],
"data",
signal_axes=[
idx
for idx, axis in enumerate(signal["axes"])
if not axis["navigate"]
],
chunks=chunks,
show_progressbar=show_progressbar,
**kwds,
)
if default_version < Version("1.2"):
metadata_dict["_internal_parameters"] = metadata_dict.pop("_HyperSpy")
self.dict2group(metadata_dict, mapped_par, **kwds)
original_par = group.require_group("original_metadata")
self.dict2group(signal["original_metadata"], original_par, **kwds)
learning_results = group.require_group("learning_results")
self.dict2group(signal["learning_results"], learning_results, **kwds)
attributes = group.require_group("attributes")
self.dict2group(signal["attributes"], attributes, **kwds)
if signal["models"]:
model_group = self.file.require_group("Analysis/models")
self.dict2group(signal["models"], model_group, **kwds)
for model in model_group.values():
model.attrs["_signal"] = group.name
def dict2group(self, dictionary, group, **kwds):
"Recursive writer of dicts and signals"
for key, value in dictionary.items():
_logger.debug("Saving item: {}".format(key))
if isinstance(value, dict):
self.dict2group(value, group.require_group(key), **kwds)
elif isinstance(value, (np.ndarray, self.Dataset, da.Array)):
self.overwrite_dataset(group, value, key, **kwds)
elif value is None:
group.attrs[key] = "_None_"
elif isinstance(value, bytes):
try:
# binary string if has any null characters (otherwise not
# supported by hdf5)
value.index(b"\x00")
group.attrs["_bs_" + key] = np.void(value)
except ValueError:
group.attrs[key] = value.decode()
elif isinstance(value, str):
group.attrs[key] = value
elif isinstance(value, list):
if len(value):
self.parse_structure(key, group, value, "_list_", **kwds)
else:
group.attrs["_list_empty_" + key] = "_None_"
elif isinstance(value, tuple):
if len(value):
self.parse_structure(key, group, value, "_tuple_", **kwds)
else:
group.attrs["_tuple_empty_" + key] = "_None_"
else:
try:
group.attrs[key] = value
except Exception:
_logger.exception(
"The writer could not write the following "
f"information in the file: {key} : {value}"
)
def parse_structure(self, key, group, value, _type, **kwds):
try:
# Here we check if there are any signals in the container, as
# casting a long list of signals to a numpy array takes a very long
# time. So we check if there are any, and save numpy the trouble
if np.any([isinstance(t, dict) and "_sig_" in t for t in value]):
tmp = np.array([[0]])
else:
tmp = np.array(value)
except ValueError:
tmp = np.array([[0]])
if np.issubdtype(tmp.dtype, object) or tmp.ndim != 1:
self.dict2group(
dict(zip([str(i) for i in range(len(value))], value)),
group.require_group(_type + str(len(value)) + "_" + key),
**kwds,
)
elif np.issubdtype(tmp.dtype, np.dtype("U")):
if _type + key in group:
del group[_type + key]
group.create_dataset(
_type + key, shape=tmp.shape, **self._unicode_kwds, **kwds
)
group[_type + key][:] = tmp[:]
else:
if _type + key in group:
del group[_type + key]
group.create_dataset(_type + key, data=tmp, **kwds)
|