File: _api.py

package info (click to toggle)
python-rosettasciio 0.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,644 kB
  • sloc: python: 36,638; xml: 2,582; makefile: 20; ansic: 4
file content (1327 lines) | stat: -rw-r--r-- 53,112 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
# -*- coding: utf-8 -*-
# Copyright 2010 Stefano Mazzucco
# Copyright 2011-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO. It is a fork of the original PIL dm3 plugin
# written by Stefano Mazzucco.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.

# Plugin to read the Gatan Digital Micrograph(TM) file format


import logging
import os
from copy import deepcopy

import dateutil.parser
import numpy as np
from box import Box

import rsciio.utils.readfile as iou
from rsciio._docstrings import FILENAME_DOC, LAZY_DOC, RETURNS_DOC
from rsciio.utils.exceptions import DM3DataTypeError, DM3TagIDError, DM3TagTypeError
from rsciio.utils.tools import ensure_unicode

_logger = logging.getLogger(__name__)


class DigitalMicrographReader(object):
    """Class to read Gatan Digital Micrograph (TM) files.

    Currently it supports versions 3 and 4.

    Attributes
    ----------
    dm_version, endian, tags_dict

    Methods
    -------
    parse_file, parse_header, get_image_dictionaries

    """

    _complex_type = (15, 18, 20)
    simple_type = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

    def __init__(self, f):
        self.dm_version = None
        self.endian = None
        self.tags_dict = None
        self.f = f

    def parse_file(self):
        self.f.seek(0)
        self.parse_header()
        self.tags_dict = {"root": {}}
        number_of_root_tags = self.parse_tag_group()[2]
        _logger.info("Total tags in root group: %s", number_of_root_tags)
        self.parse_tags(
            number_of_root_tags, group_name="root", group_dict=self.tags_dict
        )

    def parse_header(self):
        self.dm_version = iou.read_long(self.f, "big")
        if self.dm_version not in (3, 4):
            raise NotImplementedError(
                "Currently we only support reading DM versions 3 and 4 but "
                "this file "
                "seems to be version %s " % self.dm_version
            )
        filesizeB = self.read_l_or_q(self.f, "big")
        is_little_endian = iou.read_long(self.f, "big")

        _logger.info("DM version: %i", self.dm_version)
        _logger.info("size %i B", filesizeB)
        _logger.info("Is file Little endian? %s", bool(is_little_endian))
        if bool(is_little_endian):
            self.endian = "little"
        else:
            self.endian = "big"

    def parse_tags(self, ntags, group_name="root", group_dict=None):
        """Parse the DM file into a dictionary."""
        if group_dict is None:
            group_dict = {}
        unnammed_data_tags = 0
        unnammed_group_tags = 0
        for tag in range(ntags):
            _logger.debug("Reading tag name at address: %s", self.f.tell())
            tag_header = self.parse_tag_header()
            tag_name = tag_header["tag_name"]
            if "." in tag_name:
                # remove '.' from tag_name to avoid conflict with flattened
                # syntax of box.Box
                tag_name = tag_name.replace(".", "")

            skip = True if (group_name == "ImageData" and tag_name == "Data") else False
            _logger.debug("Tag name: %s", tag_name[:20])
            _logger.debug("Tag ID: %s", tag_header["tag_id"])

            if tag_header["tag_id"] == 21:  # it's a TagType (DATA)
                if not tag_name:
                    tag_name = "Data%i" % unnammed_data_tags
                    unnammed_data_tags += 1

                _logger.debug("Reading data tag at address: %s", self.f.tell())

                # Start reading the data
                # Raises IOError if it is wrong
                self.check_data_tag_delimiter()
                infoarray_size = self.read_l_or_q(self.f, "big")
                _logger.debug("Infoarray size: %s", infoarray_size)
                if infoarray_size == 1:  # Simple type
                    _logger.debug("Reading simple data")
                    etype = self.read_l_or_q(self.f, "big")
                    data = self.read_simple_data(etype)
                elif infoarray_size == 2:  # String
                    _logger.debug("Reading string")
                    enctype = self.read_l_or_q(self.f, "big")
                    if enctype != 18:
                        raise IOError("Expected 18 (string), got %i" % enctype)
                    string_length = self.parse_string_definition()
                    data = self.read_string(string_length, skip=skip)
                elif infoarray_size == 3:  # Array of simple type
                    _logger.debug("Reading simple array")
                    # Read array header
                    enctype = self.read_l_or_q(self.f, "big")
                    if enctype != 20:  # Should be 20 if it is an array
                        raise IOError("Expected 20 (string), got %i" % enctype)
                    size, enc_eltype = self.parse_array_definition()
                    data = self.read_array(size, enc_eltype, skip=skip)
                elif infoarray_size > 3:
                    enctype = self.read_l_or_q(self.f, "big")
                    if enctype == 15:  # It is a struct
                        _logger.debug("Reading struct")
                        definition = self.parse_struct_definition()
                        _logger.debug("Struct definition %s", definition)
                        data = self.read_struct(definition, skip=skip)
                    elif enctype == 20:  # It is an array of complex type
                        # Read complex array info
                        # The structure is
                        # 20 <4>, ?  <4>, enc_dtype <4>, definition <?>,
                        # size <4>
                        enc_eltype = self.read_l_or_q(self.f, "big")
                        if enc_eltype == 15:  # Array of structs
                            _logger.debug("Reading array of structs")
                            definition = self.parse_struct_definition()
                            size = self.read_l_or_q(self.f, "big")
                            _logger.debug("Struct definition: %s", definition)
                            _logger.debug("Array size: %s", size)
                            data = self.read_array(
                                size=size,
                                enc_eltype=enc_eltype,
                                extra={"definition": definition},
                                skip=skip,
                            )
                        elif enc_eltype == 18:  # Array of strings
                            _logger.debug("Reading array of strings")
                            string_length = self.parse_string_definition()
                            size = self.read_l_or_q(self.f, "big")
                            data = self.read_array(
                                size=size,
                                enc_eltype=enc_eltype,
                                extra={"length": string_length},
                                skip=skip,
                            )
                        elif enc_eltype == 20:  # Array of arrays
                            _logger.debug("Reading array of arrays")
                            el_length, enc_eltype = self.parse_array_definition()
                            size = self.read_l_or_q(self.f, "big")
                            data = self.read_array(
                                size=size,
                                enc_eltype=enc_eltype,
                                extra={"size": el_length},
                                skip=skip,
                            )

                else:  # Infoarray_size < 1
                    raise IOError("Invalided infoarray size ", infoarray_size)

                group_dict[tag_name] = data

            elif tag_header["tag_id"] == 20:  # it's a TagGroup (GROUP)
                if not tag_name:
                    tag_name = "TagGroup%i" % unnammed_group_tags
                    unnammed_group_tags += 1
                _logger.debug("Reading Tag group at address: %s", self.f.tell())
                ntags = self.parse_tag_group(size=True)[2]
                group_dict[tag_name] = {}
                self.parse_tags(
                    ntags=ntags, group_name=tag_name, group_dict=group_dict[tag_name]
                )
            else:
                _logger.debug("File address:", self.f.tell())
                raise DM3TagIDError(tag_header["tag_id"])

    def get_data_reader(self, enc_dtype):
        # _data_type dictionary.
        # The first element of the InfoArray in the TagType
        # will always be one of _data_type keys.
        # the tuple reads: ('read bytes function', 'number of bytes', 'type')

        dtype_dict = {
            2: (iou.read_short, 2, "h"),
            3: (iou.read_long, 4, "l"),
            4: (iou.read_ushort, 2, "H"),  # dm3 uses ushorts for unicode chars
            5: (iou.read_ulong, 4, "L"),
            6: (iou.read_float, 4, "f"),
            7: (iou.read_double, 8, "d"),
            8: (iou.read_boolean, 1, "B"),
            # dm3 uses chars for 1-Byte signed integers
            9: (iou.read_char, 1, "b"),
            10: (iou.read_byte, 1, "b"),  # 0x0a
            11: (iou.read_long_long, 8, "q"),  # long long, new in DM4
            # unsigned long long, new in DM4
            12: (iou.read_ulong_long, 8, "Q"),
            15: (
                self.read_struct,
                None,
                "struct",
            ),  # 0x0f
            18: (self.read_string, None, "c"),  # 0x12
            20: (self.read_array, None, "array"),  # 0x14
        }
        return dtype_dict[enc_dtype]

    def skipif4(self, n=1):
        if self.dm_version == 4:
            self.f.seek(4 * n, 1)

    @property
    def read_l_or_q(self):
        if self.dm_version == 4:
            return iou.read_long_long
        else:
            return iou.read_long

    def parse_array_definition(self):
        """Reads and returns the element type and length of the array.

        The position in the file must be just after the
        array encoded dtype.

        """
        enc_eltype = self.read_l_or_q(self.f, "big")
        length = self.read_l_or_q(self.f, "big")
        return length, enc_eltype

    def parse_string_definition(self):
        """Reads and returns the length of the string.

        The position in the file must be just after the
        string encoded dtype.
        """
        return self.read_l_or_q(self.f, "big")

    def parse_struct_definition(self):
        """Reads and returns the struct definition tuple.

        The position in the file must be just after the
        struct encoded dtype.

        """
        # expected to be a length
        _ = self.read_l_or_q(self.f, "big")
        nfields = self.read_l_or_q(self.f, "big")
        definition = ()
        for ifield in range(nfields):
            # expected to be a length
            _ = self.read_l_or_q(self.f, "big")
            definition += (self.read_l_or_q(self.f, "big"),)

        return definition

    def read_simple_data(self, etype):
        """Parse the data of the given DM3 file f
        with the given endianness (byte order).
        The infoArray iarray specifies how to read the data.
        Returns the tuple (file address, data).
        The tag data is stored in the platform's byte order:
        'little' endian for Intel, PC; 'big' endian for Mac, Motorola.
        If skip != 0 the data is actually skipped.
        """
        data = self.get_data_reader(etype)[0](self.f, self.endian)
        if isinstance(data, str):
            data = ensure_unicode(data)
        return data

    def read_string(self, length, skip=False):
        """Read a string defined by the infoArray iarray from file f with a
        given endianness (byte order). endian can be either 'big' or 'little'.

        If it's a tag name, each char is 1-Byte;
        if it's a tag data, each char is 2-Bytes Unicode,
        """
        size_bytes = 0
        if skip is True:
            offset = self.f.tell()
            self.f.seek(length, 1)
            return {
                "size": length,
                "size_bytes": size_bytes,
                "offset": offset,
                "endian": self.endian,
            }
        data = b""
        if self.endian == "little":
            s = iou.L_char
        elif self.endian == "big":
            s = iou.B_char
        for char in range(length):
            data += s.unpack(self.f.read(1))[0]
        try:
            data = data.decode("utf8")
        except Exception:
            # Sometimes the dm3 file strings are encoded in latin-1
            # instead of utf8
            data = data.decode("latin-1", errors="ignore")
        return data

    def read_struct(self, definition, skip=False):
        """Read a struct, defined by iarray, from file f
        with a given endianness (byte order).
        Returns a list of 2-tuples in the form
        (fieldAddress, fieldValue).
        endian can be either 'big' or 'little'.

        """
        field_value = []
        size_bytes = 0
        offset = self.f.tell()
        for dtype in definition:
            if dtype in self.simple_type:
                if skip is False:
                    data = self.get_data_reader(dtype)[0](self.f, self.endian)
                    field_value.append(data)
                else:
                    sbytes = self.get_data_reader(dtype)[1]
                    self.f.seek(sbytes, 1)
                    size_bytes += sbytes
            else:
                raise DM3DataTypeError(dtype)
        if skip is False:
            return tuple(field_value)
        else:
            return {
                "size": len(definition),
                "size_bytes": size_bytes,
                "offset": offset,
                "endian": self.endian,
            }

    def read_array(self, size, enc_eltype, extra=None, skip=False):
        """Read an array, defined by iarray, from file f
        with a given endianness (byte order).
        endian can be either 'big' or 'little'.

        """
        eltype = self.get_data_reader(enc_eltype)[0]  # same for all elements
        if skip is True:
            if enc_eltype not in self._complex_type:
                size_bytes = self.get_data_reader(enc_eltype)[1] * size
                data = {
                    "size": size,
                    "endian": self.endian,
                    "size_bytes": size_bytes,
                    "offset": self.f.tell(),
                }
                self.f.seek(size_bytes, 1)  # Skipping data
            else:
                data = eltype(skip=skip, **extra)
                self.f.seek(data["size_bytes"] * (size - 1), 1)
                data["size"] = size
                data["size_bytes"] *= size
        else:
            if enc_eltype in self.simple_type:  # simple type
                data = [eltype(self.f, self.endian) for element in range(size)]
                if enc_eltype == 4 and data:  # it's actually a string
                    data = "".join([chr(i) for i in data])
            elif enc_eltype in self._complex_type:
                data = [eltype(**extra) for element in range(size)]
        return data

    def parse_tag_group(self, size=False):
        """Parse the root TagGroup of the given DM3 file f.
        Returns the tuple (is_sorted, is_open, n_tags).
        endian can be either 'big' or 'little'.
        """
        is_sorted = iou.read_byte(self.f, "big")
        is_open = iou.read_byte(self.f, "big")
        if self.dm_version == 4 and size:
            # Just guessing that this is the size
            size = self.read_l_or_q(self.f, "big")
        n_tags = self.read_l_or_q(self.f, "big")
        return bool(is_sorted), bool(is_open), n_tags

    def parse_tag_header(self):
        tag_id = iou.read_byte(self.f, "big")
        tag_name_length = iou.read_short(self.f, "big")
        tag_name = self.read_string(tag_name_length)
        return {
            "tag_id": tag_id,
            "tag_name_length": tag_name_length,
            "tag_name": tag_name,
        }

    def check_data_tag_delimiter(self):
        self.skipif4(2)
        delimiter = self.read_string(4)
        if delimiter != "%%%%":
            raise DM3TagTypeError(delimiter)

    def get_image_dictionaries(self):
        """Returns the image dictionaries of all images in the file except
        the thumbnails.

        Returns
        -------
        dict, None

        """
        if "ImageList" not in self.tags_dict:
            return None
        if "Thumbnails" in self.tags_dict:
            thumbnail_idx = [
                tag["ImageIndex"] for key, tag in self.tags_dict["Thumbnails"].items()
            ]
        else:
            thumbnail_idx = []
        images = [
            image
            for key, image in self.tags_dict["ImageList"].items()
            if int(key.replace("TagGroup", "")) not in thumbnail_idx
        ]
        return images


class ImageObject(object):
    def __init__(self, imdict, file, order="C"):
        self.imdict = Box(imdict, box_dots=True)
        self.file = file
        self._order = order if order else "C"

    @property
    def shape(self):
        dimensions = self.imdict.ImageData.Dimensions
        shape = tuple([dimension for dimension in dimensions.values()])
        return shape[::-1]  # DM uses image indexing X, Y, Z...

    # For some image stacks created using plugins in Digital Micrograph
    # the metadata under Calibrations.Dimension would not reflect the
    # actual dimensions in the dataset, leading to these images not
    # loading properly. To allow HyperSpy to load these files, any missing
    # dimensions in the metadata is appended with "dummy" values.
    # This is done for the offsets, scales and units properties, using
    # the len_diff variable
    @property
    def offsets(self):
        dimensions = self.imdict.ImageData.Calibrations.Dimension
        len_diff = len(self.shape) - len(dimensions)
        origins = np.array([dimension.Origin for dimension in dimensions.values()])
        origins = np.append(origins, (0.0,) * len_diff)
        return -1 * origins[::-1] * self.scales

    @property
    def scales(self):
        dimensions = self.imdict.ImageData.Calibrations.Dimension
        len_diff = len(self.shape) - len(dimensions)
        scales = np.array([dimension.Scale for dimension in dimensions.values()])
        scales = np.append(scales, (1.0,) * len_diff)
        return scales[::-1]

    @property
    def units(self):
        dimensions = self.imdict.ImageData.Calibrations.Dimension
        len_diff = len(self.shape) - len(dimensions)
        return (
            tuple(
                [
                    dimension.Units if dimension.Units else ""
                    for dimension in dimensions.values()
                ]
            )
            + ("",) * len_diff
        )[::-1]

    @property
    def names(self):
        names = [None] * len(self.shape)
        indices = list(range(len(self.shape)))

        if self.signal_type == "EELS":
            if "eV" in self.units:
                names[indices.pop(self.units.index("eV"))] = "Energy loss"
        elif self.signal_type in ("EDS", "EDX"):
            if "keV" in self.units:
                names[indices.pop(self.units.index("keV"))] = "Energy"
        elif self.signal_type == "CL":
            if "nm" in self.units:
                names[indices.pop(self.units.index("nm"))] = "Wavelength"
        for index, name in zip(indices[::-1], ("x", "y", "z")):
            names[index] = name
        return names

    @property
    def title(self):
        title = self.imdict.get("Name", "")
        # ``if title else ""`` below is there to account for when Name
        # contains an empty list.
        # See https://github.com/hyperspy/hyperspy/issues/1937
        return title if title else ""

    @property
    def navigate(self):
        result = [True] * len(self.shape)
        if len(self.scales) == 1:
            result[-1] = False
        elif (
            (
                self.imdict.get("ImageTags.Meta Data.Format") is not None
                and self.imdict.ImageTags.Meta_Data.Format
                in ("Spectrum image", "Spectrum")
            )
            or (self.imdict.get("ImageTags.spim") is not None)
        ) and len(self.scales) == 2:
            result[-1] = False
        else:
            result[-2:] = (False, False)
        return result

    @property
    def to_spectrum(self):
        if (
            (
                self.imdict.get("ImageTags.Meta Data.Format") is not None
                and self.imdict.ImageTags.Meta_Data.Format == "Spectrum image"
            )
            or (self.imdict.get("ImageTags.spim") is not None)
        ) and len(self.scales) > 2:
            return True
        else:
            return False

    @property
    def order(self):
        return self._order

    @property
    def intensity_calibration(self):
        ic = self.imdict.ImageData.Calibrations.Brightness.to_dict()
        if not ic["Units"]:
            ic["Units"] = ""
        return ic

    @property
    def dtype(self):
        # Signal2D data types (Signal2D Object chapter on DM help)#
        # key = DM data type code
        # value = numpy data type
        if self.imdict.ImageData.DataType == 4:
            raise NotImplementedError("Reading data of this type is not implemented.")

        imdtype_dict = {
            0: "not_implemented",  # null
            1: "int16",
            2: "float32",
            3: "complex64",
            5: "float32",  # not numpy: 8-Byte packed complex (FFT data)
            6: "uint8",
            7: "int32",
            8: np.dtype(
                {"names": ["B", "G", "R", "A"], "formats": ["u1", "u1", "u1", "u1"]}
            ),
            9: "int8",
            10: "uint16",
            11: "uint32",
            12: "float64",
            13: "complex128",
            14: "bool",
            23: np.dtype(
                {"names": ["B", "G", "R", "A"], "formats": ["u1", "u1", "u1", "u1"]}
            ),
            27: "complex64",  # not numpy: 8-Byte packed complex (FFT data)
            28: "complex128",  # not numpy: 16-Byte packed complex (FFT data)
        }
        return imdtype_dict[self.imdict.ImageData.DataType]

    @property
    def signal_type(self):
        md_signal = self.imdict.get("ImageTags.Meta Data.Signal", "")
        if md_signal == "X-ray":
            return "EDS_TEM"
        elif (
            md_signal == "CL"
            or self.imdict.get("ImageTags.Acquisition.Monarc Spectrometer") is not None
        ):
            return "CL"
        # 'ImageTags.spim.eels' is Orsay's tag group
        elif md_signal == "EELS" or self.imdict.get("ImageTags.spim.eels") is not None:
            return "EELS"
        else:
            return ""

    def _get_data_array(self):
        need_to_close = False
        if self.file.closed:
            self.file = open(self.filename, "rb")
            need_to_close = True
        self.file.seek(self.imdict.ImageData.Data.offset)
        count = self.imdict.ImageData.Data.size
        if self.imdict.ImageData.DataType in (27, 28):  # Packed complex
            count = int(count / 2)
        data = np.fromfile(self.file, dtype=self.dtype, count=count)
        if need_to_close:
            self.file.close()
        return data

    @property
    def size(self):
        if self.imdict.ImageData.DataType in (27, 28):  # Packed complex
            if self.imdict.ImageData.Data.size % 2:
                raise IOError(
                    "ImageData.Data.size should be an even integer for "
                    "this datatype."
                )
            else:
                return int(self.imdict.ImageData.Data.size / 2)
        else:
            return self.imdict.ImageData.Data.size

    def get_data(self):
        if isinstance(self.imdict.ImageData.Data, np.ndarray):
            return self.imdict.ImageData.Data
        data = self._get_data_array()
        if self.imdict.ImageData.DataType in (27, 28):  # New packed complex
            return self.unpack_new_packed_complex(data)
        elif self.imdict.ImageData.DataType == 5:  # Old packed compled
            return self.unpack_packed_complex(data)
        elif self.imdict.ImageData.DataType in (8, 23):  # ABGR
            # Reorder the fields
            data = data[["R", "G", "B", "A"]].astype(
                [("R", "u1"), ("G", "u1"), ("B", "u1"), ("A", "u1")]
            )
        return data.reshape(self.shape, order=self.order)

    def unpack_new_packed_complex(self, data):
        packed_shape = (self.shape[0], int(self.shape[1] / 2 + 1))
        data = data.reshape(packed_shape, order=self.order)
        return np.hstack((data[:, ::-1], np.conjugate(data[:, 1:-1])))

    def unpack_packed_complex(self, tmpdata):
        shape = self.shape
        if shape[0] != shape[1] or len(shape) > 2:
            raise IOError(
                "Unable to read this DM file in packed complex format. "
                "Please report the issue to the HyperSpy developers providing "
                "the file if possible"
            )
        N = int(self.shape[0] / 2)  # think about a 2Nx2N matrix
        # create an empty 2Nx2N ndarray of complex
        data = np.zeros(shape, dtype="complex64")

        # fill in the real values:
        data[N, 0] = tmpdata[0]
        data[0, 0] = tmpdata[1]
        data[N, N] = tmpdata[2 * N**2]  # Nyquist frequency
        data[0, N] = tmpdata[2 * N**2 + 1]  # Nyquist frequency

        # fill in the non-redundant complex values:
        # top right quarter, except 1st column
        for i in range(N):  # this could be optimized
            start = 2 * i * N + 2
            stop = start + 2 * (N - 1) - 1
            step = 2
            realpart = tmpdata[start:stop:step]
            imagpart = tmpdata[start + 1 : stop + 1 : step]
            data[i, N + 1 : 2 * N] = realpart + imagpart * 1j
        # 1st column, bottom left quarter
        start = 2 * N
        stop = start + 2 * N * (N - 1) - 1
        step = 2 * N
        realpart = tmpdata[start:stop:step]
        imagpart = tmpdata[start + 1 : stop + 1 : step]
        data[N + 1 : 2 * N, 0] = realpart + imagpart * 1j
        # 1st row, bottom right quarter
        start = 2 * N**2 + 2
        stop = start + 2 * (N - 1) - 1
        step = 2
        realpart = tmpdata[start:stop:step]
        imagpart = tmpdata[start + 1 : stop + 1 : step]
        data[N, N + 1 : 2 * N] = realpart + imagpart * 1j
        # bottom right quarter, except 1st row
        start = stop + 1
        stop = start + 2 * N * (N - 1) - 1
        step = 2
        realpart = tmpdata[start:stop:step]
        imagpart = tmpdata[start + 1 : stop + 1 : step]
        complexdata = realpart + imagpart * 1j
        data[N + 1 : 2 * N, N : 2 * N] = complexdata.reshape(N - 1, N, order=self.order)

        # fill in the empty pixels: A(i)(j) = A(2N-i)(2N-j)*
        # 1st row, top left quarter, except 1st element
        data[0, 1:N] = np.conjugate(data[0, -1:-N:-1])
        # 1st row, bottom left quarter, except 1st element
        data[N, 1:N] = np.conjugate(data[N, -1:-N:-1])
        # 1st column, top left quarter, except 1st element
        data[1:N, 0] = np.conjugate(data[-1:-N:-1, 0])
        # 1st column, top right quarter, except 1st element
        data[1:N, N] = np.conjugate(data[-1:-N:-1, N])
        # top left quarter, except 1st row and 1st column
        data[1:N, 1:N] = np.conjugate(data[-1:-N:-1, -1:-N:-1])
        # bottom left quarter, except 1st row and 1st column
        data[N + 1 : 2 * N, 1:N] = np.conjugate(data[-N - 1 : -2 * N : -1, -1:-N:-1])

        return data

    def get_axes_dict(self):
        return [
            {
                "name": name,
                "size": size,
                "index_in_array": i,
                "scale": scale,
                "offset": offset,
                "units": str(units),
                "navigate": nav,
            }
            for i, (name, size, scale, offset, units, nav) in enumerate(
                zip(
                    self.names,
                    self.shape,
                    self.scales,
                    self.offsets,
                    self.units,
                    self.navigate,
                )
            )
        ]

    def get_metadata(self, metadata=None):
        if metadata is None:
            metadata = {}
        if "General" not in metadata:
            metadata["General"] = {}
        if "Signal" not in metadata:
            metadata["Signal"] = {}
        metadata["General"]["title"] = self.title
        metadata["Signal"]["signal_type"] = self.signal_type
        return metadata

    def _get_quantity(self, units):
        quantity = "Intensity"
        if len(units) == 0:
            units = ""
        elif units == "e-":
            units = "Counts"
            quantity = "Electrons"
        if self.signal_type == "EDS_TEM":
            quantity = "X-rays"
        if len(units) != 0:
            units = " (%s)" % units
        return "%s%s" % (quantity, units)

    def _get_mode(self, mode):
        if "STEM" in mode:
            return "STEM"
        elif "SEM" in mode:
            return "SEM"
        else:
            return "TEM"

    def _get_time(self, time):
        try:
            dt = dateutil.parser.parse(time)
            return dt.time().isoformat()
        except Exception:
            _logger.warning(f"Time string '{time}' could not be parsed.")
            return None

    def _get_date(self, date):
        try:
            dt = dateutil.parser.parse(date)
            return dt.date().isoformat()
        except Exception:
            _logger.warning(f"Date string '{date}' could not be parsed.")
            return None

    def _get_microscope_name(self, ImageTags):
        locations = (
            "Session Info.Microscope",
            "Microscope Info.Name",
            "Microscope Info.Microscope",
        )
        for loc in locations:
            # Currentl rsciio uses Box while HyperSpy uses its own
            # DictionaryTreeBrowser. ImageTags can be one or the
            # other due to the `mapping` feature.
            if hasattr(ImageTags, "get"):
                mic = ImageTags.get(loc)
            else:  # it is DictionaryTreeBrowser
                mic = ImageTags.get_item(loc)
            if mic and mic != "[]":
                return mic
        _logger.info("Microscope name not present")
        return None

    def _parse_string(self, tag, convert_to_float=False, tag_name=None):
        if len(tag) == 0:
            return None
        elif convert_to_float:
            try:
                return float(tag)
            # In case the string can't be converted to float
            except Exception:
                if tag_name is None:
                    warning = "Metadata could not be parsed."
                else:
                    warning = f"Metadata '{tag_name}' could not be parsed."
                _logger.warning(warning)
                return None
        else:
            return tag

    def _get_exposure_time(self, tags):
        # for GMS 2 and quantum/enfinium, the  "Integration time (s)" tag is
        # only present for single spectrum acquisition;  for maps we need to
        # compute exposure * number of frames
        # same holds for some types of CL measurements
        if "Integration_time_s" in tags.keys():
            return float(tags["Integration_time_s"])
        elif "Exposure_s" in tags.keys():
            frame_number = 1
            if "Number_of_frames" in tags.keys():
                frame_number = float(tags["Number_of_frames"])
            return float(tags["Exposure_s"]) * frame_number
        else:
            _logger.info("EELS/CL exposure time can't be read.")
            return None

    def _get_CL_detector_type(self, tags):
        if (
            "Acquisition_Mode" in tags
            and tags["Acquisition_Mode"] == "Parallel dispersive"
        ):
            return "CCD"
        elif (
            "Acquisition_Mode" in tags
            and tags["Acquisition_Mode"] == "Serial dispersive"
        ):
            return "PMT"
        else:
            _logger.info("CL detector type can't be read.")
            return None

    def get_mapping(self):
        if "source" in self.imdict.ImageTags.keys():
            # For stack created with the stack builder plugin
            tags_path = "ImageList.TagGroup0.ImageTags.source.Tags at creation"
            image_tags_dict = self.imdict.ImageTags.source["Tags at creation"]
        else:
            # Standard tags
            tags_path = "ImageList.TagGroup0.ImageTags"
            image_tags_dict = self.imdict.ImageTags
        is_scanning = "DigiScan" in image_tags_dict.keys()
        # check if instrument is SEM or TEM
        if (
            "Microscope Info" in self.imdict.ImageTags
            and "Illumination Mode" in self.imdict.ImageTags["Microscope Info"]
        ):
            microscope = (
                "SEM"
                if self._get_mode(
                    self.imdict.ImageTags["Microscope Info"]["Illumination Mode"]
                )
                == "SEM"
                else "TEM"
            )
        else:
            microscope = "TEM"
        mapping = {
            "{}.DataBar.Acquisition Date".format(tags_path): (
                "General.date",
                self._get_date,
            ),
            "{}.DataBar.Acquisition Time".format(tags_path): (
                "General.time",
                self._get_time,
            ),
            "{}.Microscope Info.Voltage".format(tags_path): (
                "Acquisition_instrument.%s.beam_energy" % microscope,
                lambda x: x / 1e3,
            ),
            "{}.Microscope Info.Stage Position.Stage Alpha".format(tags_path): (
                "Acquisition_instrument.%s.Stage.tilt_alpha" % microscope,
                None,
            ),
            "{}.Microscope Info.Stage Position.Stage Beta".format(tags_path): (
                "Acquisition_instrument.%s.Stage.tilt_beta" % microscope,
                None,
            ),
            "{}.Microscope Info.Stage Position.Stage X".format(tags_path): (
                "Acquisition_instrument.%s.Stage.x" % microscope,
                lambda x: x * 1e-3,
            ),
            "{}.Microscope Info.Stage Position.Stage Y".format(tags_path): (
                "Acquisition_instrument.%s.Stage.y" % microscope,
                lambda x: x * 1e-3,
            ),
            "{}.Microscope Info.Stage Position.Stage Z".format(tags_path): (
                "Acquisition_instrument.%s.Stage.z" % microscope,
                lambda x: x * 1e-3,
            ),
            "{}.Microscope Info.Illumination Mode".format(tags_path): (
                "Acquisition_instrument.%s.acquisition_mode" % microscope,
                self._get_mode,
            ),
            "{}.Microscope Info.Probe Current (nA)".format(tags_path): (
                "Acquisition_instrument.%s.beam_current" % microscope,
                None,
            ),
            "{}.Session Info.Operator".format(tags_path): (
                "General.authors",
                self._parse_string,
            ),
            "{}.Session Info.Specimen".format(tags_path): (
                "Sample.description",
                self._parse_string,
            ),
        }

        if "Microscope Info" in image_tags_dict.keys():
            is_TEM = is_diffraction = None
            if "Illumination Mode" in image_tags_dict["Microscope Info"].keys():
                is_TEM = "TEM" == image_tags_dict.Microscope_Info.Illumination_Mode
            if "Imaging Mode" in image_tags_dict["Microscope Info"].keys():
                is_diffraction = (
                    "DIFFRACTION" == image_tags_dict.Microscope_Info.Imaging_Mode
                )
            if is_TEM:
                if is_diffraction:
                    mapping.update(
                        {
                            "{}.Microscope_Info.Indicated_Magnification".format(
                                tags_path
                            ): ("Acquisition_instrument.TEM.camera_length", None),
                        }
                    )
                else:
                    mapping.update(
                        {
                            "{}.Microscope_Info.Indicated_Magnification".format(
                                tags_path
                            ): ("Acquisition_instrument.TEM.magnification", None),
                        }
                    )
            else:
                mapping.update(
                    {
                        "{}.Microscope Info.STEM Camera Length".format(tags_path): (
                            "Acquisition_instrument.%s.camera_length" % microscope,
                            None,
                        ),
                        "{}.Microscope Info.Indicated Magnification".format(
                            tags_path
                        ): (
                            "Acquisition_instrument.%s.magnification" % microscope,
                            None,
                        ),
                    }
                )

            mapping.update(
                {
                    tags_path: (
                        "Acquisition_instrument.%s.microscope" % microscope,
                        self._get_microscope_name,
                    ),
                }
            )
        if "SI" in self.imdict.ImageTags.keys():
            mapping.update(
                {
                    "{}.SI.Acquisition.Date".format(tags_path): (
                        "General.date",
                        self._get_date,
                    ),
                    "{}.SI.Acquisition.Start time".format(tags_path): (
                        "General.time",
                        self._get_time,
                    ),
                }
            )
        if self.signal_type == "EELS":
            if is_scanning:
                mapped_attribute = "dwell_time"
            else:
                mapped_attribute = "exposure"
            mapping.update(
                {
                    "{}.EELS.Acquisition.Date".format(tags_path): (
                        "General.date",
                        self._get_date,
                    ),
                    "{}.EELS.Acquisition.Start time".format(tags_path): (
                        "General.time",
                        self._get_time,
                    ),
                    "{}.EELS.Experimental Conditions.".format(tags_path)
                    + "Collection semi-angle (mrad)": (
                        "Acquisition_instrument.TEM.Detector.EELS.collection_angle",
                        None,
                    ),
                    "{}.EELS.Experimental Conditions.".format(tags_path)
                    + "Convergence semi-angle (mrad)": (
                        "Acquisition_instrument.TEM.convergence_angle",
                        None,
                    ),
                    "{}.EELS.Acquisition".format(tags_path): (
                        "Acquisition_instrument.TEM.Detector.EELS.%s"
                        % mapped_attribute,
                        self._get_exposure_time,
                    ),
                    "{}.EELS.Acquisition.Number_of_frames".format(tags_path): (
                        "Acquisition_instrument.TEM.Detector.EELS.frame_number",
                        None,
                    ),
                    "{}.EELS_Spectrometer.Aperture_label".format(tags_path): (
                        "Acquisition_instrument.TEM.Detector.EELS.aperture_size",
                        lambda string: self._parse_string(
                            string.replace("mm", ""),
                            convert_to_float=True,
                            tag_name="Aperture_label",
                        ),
                    ),
                    "{}.EELS Spectrometer.Instrument name".format(tags_path): (
                        "Acquisition_instrument.TEM.Detector.EELS.spectrometer",
                        None,
                    ),
                }
            )
        elif self.signal_type == "EDS_TEM":
            mapping.update(
                {
                    "{}.EDS.Acquisition.Date".format(tags_path): (
                        "General.date",
                        self._get_date,
                    ),
                    "{}.EDS.Acquisition.Start time".format(tags_path): (
                        "General.time",
                        self._get_time,
                    ),
                    "{}.EDS.Detector_Info.Azimuthal_angle".format(tags_path): (
                        "Acquisition_instrument.TEM.Detector.EDS.azimuth_angle",
                        None,
                    ),
                    "{}.EDS.Detector_Info.Elevation_angle".format(tags_path): (
                        "Acquisition_instrument.TEM.Detector.EDS.elevation_angle",
                        None,
                    ),
                    "{}.EDS.Solid_angle".format(tags_path): (
                        "Acquisition_instrument.TEM.Detector.EDS.solid_angle",
                        None,
                    ),
                    "{}.EDS.Live_time".format(tags_path): (
                        "Acquisition_instrument.TEM.Detector.EDS.live_time",
                        None,
                    ),
                    "{}.EDS.Real_time".format(tags_path): (
                        "Acquisition_instrument.TEM.Detector.EDS.real_time",
                        None,
                    ),
                }
            )
        elif self.signal_type == "CL":
            mapping.update(
                {
                    "{}.CL.Acquisition.Date".format(tags_path): (
                        "General.date",
                        self._get_date,
                    ),
                    "{}.CL.Acquisition.Start_time".format(tags_path): (
                        "General.time",
                        self._get_time,
                    ),
                    "{}.Meta_Data.Acquisition_Mode".format(tags_path): (
                        "Acquisition_instrument.Spectrometer.acquisition_mode",
                        None,
                    ),
                    "{}.Meta_Data.Format".format(tags_path): ("Signal.format", None),
                    "{}.Meta_Data".format(tags_path): (
                        "Acquisition_instrument.Detector.detector_type",
                        self._get_CL_detector_type,
                    ),
                    "{}.Acquisition.Monarc_Spectrometer.Grating".format(tags_path): (
                        "Acquisition_instrument.Spectrometer.Grating.groove_density",
                        lambda string: self._parse_string(
                            string, convert_to_float=True, tag_name="Grating"
                        ),
                    ),
                    "{}.CL.Acquisition.Dispersion_grating_(lines/mm)".format(
                        tags_path
                    ): (
                        "Acquisition_instrument.Spectrometer.Grating.groove_density",
                        None,
                    ),
                    "{}.Acquisition.Monarc_Spectrometer.Slit_Width".format(tags_path): (
                        "Acquisition_instrument.Spectrometer.entrance_slit_width",
                        None,
                    ),
                    "{}.Acquisition.Monarc_Spectrometer.Bandpass".format(tags_path): (
                        "Acquisition_instrument.Spectrometer.bandpass",
                        None,
                    ),
                    # Parallel spectrum
                    "{}.CL.Acquisition.Central_wavelength_(nm)".format(tags_path): (
                        "Acquisition_instrument.Spectrometer.central_wavelength",
                        None,
                    ),
                    "{}.CL.Acquisition.Exposure_(s)".format(tags_path): (
                        "Acquisition_instrument.Detector.exposure_per_frame",
                        None,
                    ),
                    "{}.CL.Acquisition.Number_of_frames".format(tags_path): (
                        "Acquisition_instrument.Detector.frames",
                        None,
                    ),
                    "{}.CL.Acquisition".format(tags_path): (
                        "Acquisition_instrument.Detector.integration_time",
                        self._get_exposure_time,
                    ),
                    "{}.CL.Acquisition.Saturation_fraction".format(tags_path): (
                        "Acquisition_instrument.Detector.saturation_fraction",
                        None,
                    ),
                    "{}.Acquisition.Parameters.High_Level.Binning".format(tags_path): (
                        "Acquisition_instrument.Detector.binning",
                        None,
                    ),
                    "{}.Acquisition.Parameters.High_Level.CCD_Read_Area".format(
                        tags_path
                    ): ("Acquisition_instrument.Detector.sensor_roi", None),
                    "{}.Acquisition.Parameters.High_Level.Processing".format(
                        tags_path
                    ): ("Acquisition_instrument.Detector.processing", None),
                    "{}.Acquisition.Device.CCD.Pixel_Size_um".format(tags_path): (
                        "Acquisition_instrument.Detector.pixel_size",
                        lambda x: (
                            x[0] if (isinstance(x, tuple) and x[0] == x[1]) else x
                        ),
                    ),
                    # Serial Spectrum
                    "{}.CL.Acquisition.Acquisition_begin".format(tags_path): (
                        "General.date",
                        self._get_date,
                    ),
                    "{}.CL.Acquisition.Dwell_time_(s)".format(tags_path): (
                        "Acquisition_instrument.Detector.integration_time",
                        None,
                    ),
                    "{}.CL.Acquisition.Start_wavelength_(nm)".format(tags_path): (
                        "Acquisition_instrument.Spectrometer.start_wavelength",
                        None,
                    ),
                    "{}.CL.Acquisition.Step-size_(nm)".format(tags_path): (
                        "Acquisition_instrument.Spectrometer.step_size",
                        None,
                    ),
                    # PMT image
                    "{}.Acquisition.Monarc_Spectrometer.PMT_HV".format(tags_path): (
                        "Acquisition_instrument.Detector.pmt_voltage",
                        None,
                    ),
                    "{}.DigiScan.Sample Time".format(tags_path): (
                        "Acquisition_instrument.%s.dwell_time" % microscope,
                        lambda x: x / 1e6,
                    ),
                    # SI
                    "{}.DataBar.Acquisition_Date".format(tags_path): (
                        "General.date",
                        self._get_date,
                    ),
                    "{}.DataBar.Acquisition_Time".format(tags_path): (
                        "General.time",
                        self._get_time,
                    ),
                    "{}.SI.Acquisition.SI_Application_Mode.Name".format(tags_path): (
                        "Acquisition_instrument.Spectrum_image.mode",
                        None,
                    ),
                    "{}.SI.Acquisition.Artefact_Correction.Spatial_Drift.Periodicity".format(
                        tags_path
                    ): (
                        "Acquisition_instrument.Spectrum_image.drift_correction_periodicity",
                        None,
                    ),
                    "{}.SI.Acquisition.Artefact_Correction.Spatial_Drift.Units".format(
                        tags_path
                    ): (
                        "Acquisition_instrument.Spectrum_image.drift_correction_units",
                        None,
                    ),
                }
            )
        elif "DigiScan" in image_tags_dict.keys():
            mapping.update(
                {
                    "{}.DigiScan.Sample Time".format(tags_path): (
                        "Acquisition_instrument.%s.dwell_time" % microscope,
                        lambda x: x / 1e6,
                    ),
                }
            )
        else:
            mapping.update(
                {
                    "{}.Acquisition.Parameters.Detector.".format(tags_path)
                    + "exposure_s": (
                        "Acquisition_instrument.TEM.Camera.exposure",
                        None,
                    ),
                }
            )
        mapping.update(
            {
                "ImageList.TagGroup0.ImageData.Calibrations.Brightness.Units": (
                    "Signal.quantity",
                    self._get_quantity,
                ),
                "ImageList.TagGroup0.ImageData.Calibrations.Brightness.Scale": (
                    "Signal.Noise_properties.Variance_linear_model.gain_factor",
                    None,
                ),
                "ImageList.TagGroup0.ImageData.Calibrations.Brightness.Origin": (
                    "Signal.Noise_properties.Variance_linear_model.gain_offset",
                    None,
                ),
            }
        )
        return mapping


def file_reader(filename, lazy=False, order=None, optimize=True):
    """
    Read a DM3/4 file and loads the data into the appropriate class.

    If more than one dataset is contained in the ``.dm3/4`` file, a list of
    signals is returned.

    Parameters
    ----------
    %s
    %s
    order : str
        One of 'C' or 'F'. Define the ordering of the data.
    optimize : bool, Default=True
        If ``True``, the data is replaced by its
        :external+hyperspy:ref:`optimized copy <signal.transpose_optimize>` during
        loading to speed up operations, e.g. iteration over navigation axes.
        The cost of this speed improvement is to double the memory requirement
        during data loading, which for large data sets can lead to a slow down on
        machines with limited memory. When operating on lazy signals, if ``True``,
        the chunks are optimised for the new axes configuration.

    %s
    """

    with open(filename, "rb") as f:
        dm = DigitalMicrographReader(f)
        dm.parse_file()
        images = [
            ImageObject(imdict, f, order=order)
            for imdict in dm.get_image_dictionaries()
        ]
        imd = []
        del dm.tags_dict["ImageList"]
        dm.tags_dict["ImageList"] = {}

        for image in images:
            dm.tags_dict["ImageList"]["TagGroup0"] = image.imdict.to_dict()
            axes = image.get_axes_dict()
            mp = image.get_metadata()
            mp["General"]["original_filename"] = os.path.split(filename)[1]
            post_process = []
            if image.to_spectrum is True:
                post_process.append(lambda s: s.to_signal1D(optimize=optimize))
            post_process.append(lambda s: s.squeeze())
            if lazy:
                image.filename = filename
                import dask.delayed as dd
                from dask.array import from_delayed

                val = dd(image.get_data, pure=True)()
                data = from_delayed(val, shape=image.shape, dtype=image.dtype)
            else:
                data = image.get_data()
            # in the event there are multiple signals contained within this
            # DM file, it is important to make a "deepcopy" of the metadata
            # and original_metadata, since they are changed in each iteration
            # of the "for image in images" loop, and using shallow copies
            # will result in the final signal's metadata being used for all
            # of the contained signals
            imd.append(
                {
                    "data": data,
                    "axes": axes,
                    "metadata": deepcopy(mp),
                    "original_metadata": deepcopy(dm.tags_dict),
                    "post_process": post_process,
                    "mapping": image.get_mapping(),
                }
            )

    return imd


file_reader.__doc__ %= (FILENAME_DOC, LAZY_DOC, RETURNS_DOC)