File: _api.py

package info (click to toggle)
python-rosettasciio 0.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,644 kB
  • sloc: python: 36,638; xml: 2,582; makefile: 20; ansic: 4
file content (2435 lines) | stat: -rw-r--r-- 93,796 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.

# Plugin to read the mountainsmap surface format (sur)
# Current state can bring support to the surface format if the file is an
# attolight hyperspectral map, but cannot bring write nor support for other
# mountainsmap files (.pro etc.). I need to write some tests, check whether the
# comments can be systematically parsed into metadata and write a support for
# original_metadata or other

import ast
import datetime
import logging
import os
import re
import struct
import warnings
import zlib
from copy import deepcopy

# Commented for now because I don't know what purpose it serves
# import traits.api as t
# Dateutil allows to parse date but I don't think it's useful here
# import dateutil.parser
import numpy as np

# Maybe later we can implement reading the class with the io utils tools instead
# of re-defining read functions in the class
# import rsciio.utils.readfile as iou
# This module will prove useful when we write the export function
# import rsciio.utils.tools
# DictionaryTreeBrowser class handles the fancy metadata dictionnaries
# from hyperspy.misc.utils import DictionaryTreeBrowser
from rsciio._docstrings import (
    FILENAME_DOC,
    LAZY_UNSUPPORTED_DOC,
    RETURNS_DOC,
    SIGNAL_DOC,
)
from rsciio.utils.date_time_tools import get_date_time_from_metadata
from rsciio.utils.exceptions import MountainsMapFileError
from rsciio.utils.rgb_tools import is_rgb, is_rgba

_logger = logging.getLogger(__name__)


def parse_metadata(cmt: str, prefix: str = "$", delimiter: str = "=") -> dict:
    """
    Parse metadata from the comment field of a digitalsurf file, or any other
    str in similar formatting. Return it as a hyperspy-compatible nested dict.

    Parameters
    ----------
    cmt : str
        Str containing contents of a digitalsurf file "comment" field.
    prefix : str
        Prefix character, must be present at the start of each line,
        otherwise the line is ignored. ``"$"`` for digitalsurf files,
        typically an empty string (``""``) when parsing from text files.
        Default is ``"$"``.
    delimiter : str
        Character that delimit key-value pairs in digitalsurf comment.
        Default is ``"="``.

    Returns
    -------
    dict
        Nested dictionnary of the metadata.
    """
    # dict_ms is created as an empty dictionnary
    dict_md = {}
    # Title lines start with an underscore
    titlestart = "{:s}_".format(prefix)

    key_main = None

    for line in cmt.splitlines():
        # Here we ignore any empty line or line starting with @@
        ignore = False
        if not line.strip() or line.startswith("@@"):
            ignore = True
        # If the line must not be ignored
        if not ignore:
            if line.startswith(titlestart):
                # We strip keys from whitespace at the end and beginning
                key_main = line[len(titlestart) :].strip()
                dict_md[key_main] = {}
            elif line.startswith(prefix):
                if key_main is None:
                    key_main = "UNTITLED"
                    dict_md[key_main] = {}
                key, *li_value = line.split(delimiter)
                # Key is also stripped from beginning or end whitespace
                key = key[len(prefix) :].strip()
                str_value = li_value[0] if len(li_value) > 0 else ""
                # remove whitespace at the beginning of value
                str_value = str_value.strip()
                li_value = str_value.split(" ")
                try:
                    if key == "Grating":
                        dict_md[key_main][key] = li_value[
                            0
                        ]  # we don't want to eval this one
                    else:
                        dict_md[key_main][key] = ast.literal_eval(li_value[0])
                except Exception:
                    dict_md[key_main][key] = li_value[0]
                if len(li_value) > 1:
                    dict_md[key_main][key + "_units"] = li_value[1]
    return dict_md


class DigitalSurfHandler(object):
    """Class to read Digital Surf MountainsMap files.

    Attributes
    ----------
    filename, signal_dict, _work_dict, _list_sur_file_content, _Object_type,
    _N_data_object, _N_data_channels,

    Methods
    -------
    parse_file, parse_header, get_image_dictionaries

    Class Variables
    ---------------
    _object_type : dict key: int containing the mountainsmap object types

    """

    # Object types
    _mountains_object_types = {
        -1: "_ERROR",
        0: "_UNKNOWN",
        1: "_PROFILE",
        2: "_SURFACE",
        3: "_BINARYIMAGE",
        4: "_PROFILESERIE",
        5: "_SURFACESERIE",
        6: "_MERIDIANDISC",
        7: "_MULTILAYERPROFILE",
        8: "_MULTILAYERSURFACE",
        9: "_PARALLELDISC",  # not implemented
        10: "_INTENSITYIMAGE",
        11: "_INTENSITYSURFACE",
        12: "_RGBIMAGE",
        13: "_RGBSURFACE",  # Deprecated
        14: "_FORCECURVE",  # Deprecated
        15: "_SERIEOFFORCECURVE",  # Deprecated
        16: "_RGBINTENSITYSURFACE",  # Surface + Image
        17: "_CONTOURPROFILE",
        18: "_SERIESOFRGBIMAGES",
        20: "_SPECTRUM",
        21: "_HYPCARD",
    }

    def __init__(self, filename: str):
        # We do not need to check for file existence here because
        # io module implements it in the load function
        self.filename = filename

        # The signal_dict dictionnary has to be returned by the
        # file_reader function. By default, we return the minimal
        # mandatory fields
        self.signal_dict = {
            "data": np.empty((0, 0, 0)),
            "axes": [],
            "metadata": {},
            "original_metadata": {},
        }

        # Dictionary to store, read and write fields in the binary file
        # defined in the MountainsMap SDK. Structure is
        # _work_dict['Field']['value'] : access field value
        # _work_dict['Field']['b_unpack_fn'](f) : unpack value from file f
        # _work_dict['Field']['b_pack_fn'](f,v): pack value v in file f
        self._work_dict = {
            "_01_Signature": {
                "value": "DSCOMPRESSED",  # Uncompressed key is DIGITAL SURF
                "b_unpack_fn": lambda f: self._get_str(f, 12),
                "b_pack_fn": lambda f, v: self._set_str(f, v, 12),
            },
            "_02_Format": {
                "value": 0,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_03_Number_of_Objects": {
                "value": 1,
                "b_unpack_fn": self._get_uint16,
                "b_pack_fn": self._set_uint16,
            },
            "_04_Version": {
                "value": 1,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_05_Object_Type": {
                "value": 2,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_06_Object_Name": {
                "value": "",
                "b_unpack_fn": lambda f: self._get_str(
                    f,
                    30,
                ),
                "b_pack_fn": lambda f, v: self._set_str(f, v, 30),
            },
            "_07_Operator_Name": {
                "value": "ROSETTA",
                "b_unpack_fn": lambda f: self._get_str(
                    f,
                    30,
                ),
                "b_pack_fn": lambda f, v: self._set_str(f, v, 30),
            },
            "_08_P_Size": {
                "value": 1,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_09_Acquisition_Type": {
                "value": 0,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_10_Range_Type": {
                "value": 0,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_11_Special_Points": {
                "value": 0,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_12_Absolute": {
                "value": 0,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_13_Gauge_Resolution": {
                "value": 0.0,
                "b_unpack_fn": self._get_float,
                "b_pack_fn": self._set_float,
            },
            "_14_W_Size": {
                "value": 0,
                "b_unpack_fn": self._get_uint32,
                "b_pack_fn": self._set_uint32,
            },
            "_15_Size_of_Points": {
                "value": 16,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_16_Zmin": {
                "value": 0,
                "b_unpack_fn": self._get_int32,
                "b_pack_fn": self._set_int32,
            },
            "_17_Zmax": {
                "value": 0,
                "b_unpack_fn": self._get_int32,
                "b_pack_fn": self._set_int32,
            },
            "_18_Number_of_Points": {
                "value": 1,
                "b_unpack_fn": self._get_int32,
                "b_pack_fn": self._set_int32,
            },
            "_19_Number_of_Lines": {
                "value": 1,
                "b_unpack_fn": self._get_int32,
                "b_pack_fn": self._set_int32,
            },
            "_20_Total_Nb_of_Pts": {
                "value": 1,
                "b_unpack_fn": self._get_int32,
                "b_pack_fn": self._set_int32,
            },
            "_21_X_Spacing": {
                "value": 1.0,
                "b_unpack_fn": self._get_float,
                "b_pack_fn": self._set_float,
            },
            "_22_Y_Spacing": {
                "value": 1.0,
                "b_unpack_fn": self._get_float,
                "b_pack_fn": self._set_float,
            },
            "_23_Z_Spacing": {
                "value": 1.0,
                "b_unpack_fn": self._get_float,
                "b_pack_fn": self._set_float,
            },
            "_24_Name_of_X_Axis": {
                "value": "X",
                "b_unpack_fn": lambda f: self._get_str(f, 16),
                "b_pack_fn": lambda f, v: self._set_str(f, v, 16),
            },
            "_25_Name_of_Y_Axis": {
                "value": "Y",
                "b_unpack_fn": lambda f: self._get_str(f, 16),
                "b_pack_fn": lambda f, v: self._set_str(f, v, 16),
            },
            "_26_Name_of_Z_Axis": {
                "value": "Z",
                "b_unpack_fn": lambda f: self._get_str(f, 16),
                "b_pack_fn": lambda f, v: self._set_str(f, v, 16),
            },
            "_27_X_Step_Unit": {
                "value": "um",
                "b_unpack_fn": lambda f: self._get_str(f, 16),
                "b_pack_fn": lambda f, v: self._set_str(f, v, 16),
            },
            "_28_Y_Step_Unit": {
                "value": "um",
                "b_unpack_fn": lambda f: self._get_str(f, 16),
                "b_pack_fn": lambda f, v: self._set_str(f, v, 16),
            },
            "_29_Z_Step_Unit": {
                "value": "um",
                "b_unpack_fn": lambda f: self._get_str(f, 16),
                "b_pack_fn": lambda f, v: self._set_str(f, v, 16),
            },
            "_30_X_Length_Unit": {
                "value": "um",
                "b_unpack_fn": lambda f: self._get_str(f, 16),
                "b_pack_fn": lambda f, v: self._set_str(f, v, 16),
            },
            "_31_Y_Length_Unit": {
                "value": "um",
                "b_unpack_fn": lambda f: self._get_str(f, 16),
                "b_pack_fn": lambda f, v: self._set_str(f, v, 16),
            },
            "_32_Z_Length_Unit": {
                "value": "um",
                "b_unpack_fn": lambda f: self._get_str(f, 16),
                "b_pack_fn": lambda f, v: self._set_str(f, v, 16),
            },
            "_33_X_Unit_Ratio": {
                "value": 1.0,
                "b_unpack_fn": self._get_float,
                "b_pack_fn": self._set_float,
            },
            "_34_Y_Unit_Ratio": {
                "value": 1.0,
                "b_unpack_fn": self._get_float,
                "b_pack_fn": self._set_float,
            },
            "_35_Z_Unit_Ratio": {
                "value": 1.0,
                "b_unpack_fn": self._get_float,
                "b_pack_fn": self._set_float,
            },
            "_36_Imprint": {
                "value": 0,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_37_Inverted": {
                "value": 0,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_38_Levelled": {
                "value": 0,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_39_Obsolete": {
                "value": b"",
                "b_unpack_fn": lambda f: self._get_bytes(f, 12),
                "b_pack_fn": lambda f, v: self._set_bytes(f, v, 12),
            },
            "_40_Seconds": {
                "value": 0,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_41_Minutes": {
                "value": 0,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_42_Hours": {
                "value": 0,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_43_Day": {
                "value": 0,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_44_Month": {
                "value": 0,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_45_Year": {
                "value": 0,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_46_Day_of_week": {
                "value": 0,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_47_Measurement_duration": {
                "value": 0.0,
                "b_unpack_fn": self._get_float,
                "b_pack_fn": self._set_float,
            },
            "_48_Compressed_data_size": {
                "value": 0,
                "b_unpack_fn": self._get_uint32,
                "b_pack_fn": self._set_uint32,
            },
            "_49_Obsolete": {
                "value": b"",
                "b_unpack_fn": lambda f: self._get_bytes(f, 6),
                "b_pack_fn": lambda f, v: self._set_bytes(f, v, 6),
            },
            "_50_Comment_size": {
                "value": 0,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_51_Private_size": {
                "value": 0,
                "b_unpack_fn": self._get_int16,
                "b_pack_fn": self._set_int16,
            },
            "_52_Client_zone": {
                "value": b"",
                "b_unpack_fn": lambda f: self._get_bytes(f, 128),
                "b_pack_fn": lambda f, v: self._set_bytes(f, v, 128),
            },
            "_53_X_Offset": {
                "value": 0.0,
                "b_unpack_fn": self._get_float,
                "b_pack_fn": self._set_float,
            },
            "_54_Y_Offset": {
                "value": 0.0,
                "b_unpack_fn": self._get_float,
                "b_pack_fn": self._set_float,
            },
            "_55_Z_Offset": {
                "value": 0.0,
                "b_unpack_fn": self._get_float,
                "b_pack_fn": self._set_float,
            },
            "_56_T_Spacing": {
                "value": 0.0,
                "b_unpack_fn": self._get_float,
                "b_pack_fn": self._set_float,
            },
            "_57_T_Offset": {
                "value": 0.0,
                "b_unpack_fn": self._get_float,
                "b_pack_fn": self._set_float,
            },
            "_58_T_Axis_Name": {
                "value": "T",
                "b_unpack_fn": lambda f: self._get_str(f, 13),
                "b_pack_fn": lambda f, v: self._set_str(f, v, 13),
            },
            "_59_T_Step_Unit": {
                "value": "um",
                "b_unpack_fn": lambda f: self._get_str(f, 13),
                "b_pack_fn": lambda f, v: self._set_str(f, v, 13),
            },
            "_60_Comment": {
                "value": 0,
                "b_unpack_fn": self._unpack_comment,
                "b_pack_fn": self._pack_comment,
            },
            "_61_Private_zone": {
                "value": b"",
                "b_unpack_fn": self._unpack_private,
                "b_pack_fn": self._pack_private,
            },
            "_62_points": {
                "value": 0,
                "b_unpack_fn": self._unpack_data,
                "b_pack_fn": self._pack_data,
            },
        }

        # List of all measurement
        self._list_sur_file_content = []

        # The surface files convention is that when saving multiple data
        # objects at once, they are all packed in the same binary file.
        # Every single object contains a full header with all the sections,
        # but only the first one contains the relevant infos about
        # object type, the number of objects in the file and other.
        # Hence they will be made attributes.
        # Object type
        self._Object_type = "_UNKNOWN"

        # Number of data objects in the file.
        self._N_data_objects = 1
        self._N_data_channels = 1

        # Attributes useful for save and export

        # Number of nav / sig axes
        self._n_ax_nav: int = 0
        self._n_ax_sig: int = 0

        # All as a rsciio-convention axis dict or empty
        self.Xaxis: dict = {}
        self.Yaxis: dict = {}
        self.Zaxis: dict = {}
        self.Taxis: dict = {}

        # These must be set in the split functions
        self.data_split = []
        self.objtype_split = []

    # File Writer Inner methods

    def _write_sur_file(self):
        """Write self._list_sur_file_content to a file. This method is
        start-and-forget. The brainwork is performed in the construction
        of sur_file_content list of dictionaries."""

        with open(self.filename, "wb") as f:
            for dic in self._list_sur_file_content:
                # Extremely important! self._work_dict must access
                # other fields to properly encode and decode data,
                # comments etc. etc.
                self._move_values_to_workdict(dic)
                # Then inner consistency is trivial
                for key in self._work_dict:
                    self._work_dict[key]["b_pack_fn"](f, self._work_dict[key]["value"])

    def _build_sur_file_contents(
        self,
        set_comments: str = "auto",
        is_special: bool = False,
        compressed: bool = True,
        comments: dict = {},
        object_name: str = "",
        operator_name: str = "",
        absolute: int = 0,
        private_zone: bytes = b"",
        client_zone: bytes = b"",
    ):
        """Build the _sur_file_content list necessary to write a signal dictionary to
        a ``.sur`` or ``.pro`` file. The signal dictionary's inner consistency is the
        responsibility of hyperspy, and the this function's responsibility is to make
        a consistent list of _sur_file_content."""

        self._list_sur_file_content = []

        # Compute number of navigation / signal axes
        self._n_ax_nav, self._n_ax_sig = DigitalSurfHandler._get_n_axes(
            self.signal_dict
        )

        # Choose object type based on number of navigation and signal axes
        # Populate self._Object_type
        # Populate self.Xaxis, self.Yaxis, self.Taxis (if not empty)
        # Populate self.data_split and self.objtype_split (always)
        self._split_signal_dict()

        # Raise error if wrong extension
        # self._validate_filename()

        # Get a dictionary to be saved in the comment fielt of exported file
        comment_dict = self._get_comment_dict(
            self.signal_dict["original_metadata"], method=set_comments, custom=comments
        )
        # Convert the dictionary to a string of suitable format.
        comment_str = self._stringify_dict(comment_dict)

        # A _work_dict is created for each of the data arrays and object
        # that have splitted from the main object. In most cases, only a
        # single object is present in the split.
        for data, objtype in zip(self.data_split, self.objtype_split):
            self._build_workdict(
                data,
                objtype,
                self.signal_dict["metadata"],
                comment=comment_str,
                is_special=is_special,
                compressed=compressed,
                object_name=object_name,
                operator_name=operator_name,
                absolute=absolute,
                private_zone=private_zone,
                client_zone=client_zone,
            )
            # if the objects are multiple, comment is erased after the first
            # object. This is not mandatory, but makes marginally smaller files.
            if comment_str:
                comment_str = ""

            # Finally we push it all to the content list.
            self._append_work_dict_to_content()

    # Signal dictionary analysis methods
    @staticmethod
    def _get_n_axes(sig_dict: dict):
        """Return number of navigation and signal axes in the signal dict (in that order).
        Could be moved away from the .sur api as other functions probably use this as well

        Args:
            sig_dict (dict): signal dict, has to contain keys: 'data', 'axes', 'metadata'

        Returns:
            Tuple[int,int]: nax_nav,nax_sig. Number of navigation and signal axes
        """
        nax_nav = 0
        nax_sig = 0
        for ax in sig_dict["axes"]:
            if ax["navigate"]:
                nax_nav += 1
            else:
                nax_sig += 1
        return nax_nav, nax_sig

    def _is_spectrum(self) -> bool:
        """Determine if a signal is a spectrum type based on axes naming
        for export of sur_files. Could be cross-checked with other criteria
        such as hyperspy subclass etc... For now we keep it simple. If it has
        an ax named like a spectral axis, then probably its a spectrum."""

        spectrumlike_axnames = ["Wavelength", "Energy", "Energy Loss", "E"]
        is_spec = False

        for ax in self.signal_dict["axes"]:
            if ax["name"] in spectrumlike_axnames:
                is_spec = True

        return is_spec

    def _is_binary(self) -> bool:
        return self.signal_dict["data"].dtype == bool

    # Splitting /subclassing methods
    def _split_signal_dict(self):
        """Select the suitable _mountains_object_types"""

        n_nav = self._n_ax_nav
        n_sig = self._n_ax_sig

        # Here, I manually unfold the nested conditions for legibility.
        # Since there are a fixed number of dimensions supported by
        # digitalsurf .sur/.pro files, I think this is the best way to
        # proceed.
        if (n_nav, n_sig) == (0, 1):
            if self._is_spectrum():
                self._split_spectrum()
            else:
                self._split_profile()
        elif (n_nav, n_sig) == (0, 2):
            if self._is_binary():
                self._split_binary_img()
            elif is_rgb(self.signal_dict["data"]):  # "_RGBIMAGE"
                self._split_rgb()
            elif is_rgba(self.signal_dict["data"]):
                warnings.warn(
                    "A channel discarded upon saving \
                              RGBA signal in .sur format"
                )
                self._split_rgb()
            else:  # _INTENSITYSURFACE
                self._split_surface()
        elif (n_nav, n_sig) == (1, 0):
            warnings.warn(
                f"Exporting surface signal dimension {n_sig} and navigation dimension \
                          {n_nav} falls back on profile type but is not good practice. Consider \
                          transposing before saving to avoid unexpected behaviour."
            )
            self._split_profile()
        elif (n_nav, n_sig) == (1, 1):
            if self._is_spectrum():
                self._split_spectrum()
            else:
                self._split_profileserie()
        elif (n_nav, n_sig) == (1, 2):
            if is_rgb(self.signal_dict["data"]):
                self._split_rgbserie()
            elif is_rgba(self.signal_dict["data"]):
                warnings.warn(
                    "Alpha channel discarded upon saving RGBA signal in .sur format"
                )
                self._split_rgbserie()
            else:
                self._split_surfaceserie()
        elif (n_nav, n_sig) == (2, 0):
            warnings.warn(
                f"Signal dimension {n_sig} and navigation dimension {n_nav} exported "
                "as surface type. Consider transposing signal object before exporting "
                "if this is intentional."
            )
            if self._is_binary():
                self._split_binary_img()
            elif is_rgb(self.signal_dict["data"]):  # "_RGBIMAGE"
                self._split_rgb()
            elif is_rgba(self.signal_dict["data"]):
                warnings.warn(
                    "A channel discarded upon saving \
                            RGBA signal in .sur format"
                )
                self._split_rgb()
            else:
                self._split_surface()
        elif (n_nav, n_sig) == (2, 1):
            self._split_hyperspectral()
        else:
            raise MountainsMapFileError(
                msg=f"Object with signal dimension {n_sig} and navigation dimension {n_nav} not supported for .sur export"
            )

    def _split_spectrum(
        self,
    ):
        """Set _Object_type, axes except Z, data_split, objtype_split _N_data_objects, _N_data_channels"""
        # When splitting spectrum, no series axis (T/W),
        # X axis is the spectral dimension and Y the series dimension (if series).
        obj_type = 20
        self._Object_type = self._mountains_object_types[obj_type]

        nax_nav = self._n_ax_nav
        nax_sig = self._n_ax_sig

        # _split_signal_dict ensures that the correct dims are sent here.
        if (nax_nav, nax_sig) == (0, 1) or (nax_nav, nax_sig) == (1, 0):
            self.Xaxis = self.signal_dict["axes"][0]
        elif (nax_nav, nax_sig) == (1, 1):
            self.Xaxis = next(
                ax for ax in self.signal_dict["axes"] if not ax["navigate"]
            )
            self.Yaxis = next(ax for ax in self.signal_dict["axes"] if ax["navigate"])

        self.data_split = [self.signal_dict["data"]]
        self.objtype_split = [obj_type]
        self._N_data_objects = 1
        self._N_data_channels = 1

    def _split_profile(
        self,
    ):
        """Set _Object_type, axes except Z, data_split, objtype_split _N_data_objects, _N_data_channels"""

        obj_type = 1
        self._Object_type = self._mountains_object_types[obj_type]
        self.Xaxis = self.signal_dict["axes"][0]
        self.data_split = [self.signal_dict["data"]]
        self.objtype_split = [obj_type]
        self._N_data_objects = 1
        self._N_data_channels = 1

    def _split_profileserie(
        self,
    ):
        """Set _Object_type, axes except Z, data_split, objtype_split _N_data_objects, _N_data_channels"""
        obj_type = 4  # '_PROFILESERIE'
        self._Object_type = self._mountains_object_types[obj_type]

        self.Xaxis = next(ax for ax in self.signal_dict["axes"] if not ax["navigate"])
        self.Taxis = next(ax for ax in self.signal_dict["axes"] if ax["navigate"])

        self.data_split = self._split_data_alongaxis(self.Taxis)
        self.objtype_split = [obj_type] + [1] * (len(self.data_split) - 1)
        self._N_data_objects = len(self.objtype_split)
        self._N_data_channels = 1

    def _split_binary_img(
        self,
    ):
        """Set _Object_type, axes except Z, data_split, objtype_split _N_data_objects, _N_data_channels"""
        obj_type = 3
        self._Object_type = self._mountains_object_types[obj_type]

        self.Xaxis = self.signal_dict["axes"][1]
        self.Yaxis = self.signal_dict["axes"][0]

        self.data_split = [self.signal_dict["data"]]
        self.objtype_split = [obj_type]
        self._N_data_objects = 1
        self._N_data_channels = 1

    def _split_rgb(
        self,
    ):
        """Set _Object_type, axes except Z, data_split, objtype_split _N_data_objects, _N_data_channels"""
        obj_type = 12
        self._Object_type = self._mountains_object_types[obj_type]
        self.Xaxis = self.signal_dict["axes"][1]
        self.Yaxis = self.signal_dict["axes"][0]
        self.data_split = [
            np.int32(self.signal_dict["data"]["R"]),
            np.int32(self.signal_dict["data"]["G"]),
            np.int32(self.signal_dict["data"]["B"]),
        ]
        self.objtype_split = [obj_type] + [10, 10]
        self._N_data_objects = 1
        self._N_data_channels = 3

    def _split_surface(
        self,
    ):
        """Set _Object_type, axes except Z, data_split, objtype_split _N_data_objects, _N_data_channels"""
        obj_type = 2
        self._Object_type = self._mountains_object_types[obj_type]
        self.Xaxis = self.signal_dict["axes"][1]
        self.Yaxis = self.signal_dict["axes"][0]
        self.data_split = [self.signal_dict["data"]]
        self.objtype_split = [obj_type]
        self._N_data_objects = 1
        self._N_data_channels = 1

    def _split_rgbserie(self):
        """Set _Object_type, axes except Z, data_split, objtype_split _N_data_objects, _N_data_channels"""
        obj_type = 18  # "_SERIESOFRGBIMAGE"
        self._Object_type = self._mountains_object_types[obj_type]

        sigaxes_iter = iter(ax for ax in self.signal_dict["axes"] if not ax["navigate"])
        self.Yaxis = next(sigaxes_iter)
        self.Xaxis = next(sigaxes_iter)
        self.Taxis = next(ax for ax in self.signal_dict["axes"] if ax["navigate"])
        tmp_data_split = self._split_data_alongaxis(self.Taxis)

        # self.data_split = []
        self.objtype_split = []
        for d in tmp_data_split:
            self.data_split += [
                d["R"].astype(np.int16).copy(),
                d["G"].astype(np.int16).copy(),
                d["B"].astype(np.int16).copy(),
            ]
            # self.objtype_split += [12,10,10]
        self.objtype_split = [12, 10, 10] * self.Taxis["size"]
        self.objtype_split[0] = obj_type
        # self.data_split = rgbx2regular_array(self.signal_dict['data'])

        self._N_data_objects = self.Taxis["size"]
        self._N_data_channels = 3

    def _split_surfaceserie(self):
        """Set _Object_type, axes except Z, data_split, objtype_split _N_data_objects, _N_data_channels"""
        obj_type = 5
        self._Object_type = self._mountains_object_types[obj_type]
        sigaxes_iter = iter(ax for ax in self.signal_dict["axes"] if not ax["navigate"])
        self.Yaxis = next(sigaxes_iter)
        self.Xaxis = next(sigaxes_iter)
        self.Taxis = next(ax for ax in self.signal_dict["axes"] if ax["navigate"])
        self.data_split = self._split_data_alongaxis(self.Taxis)
        self.objtype_split = [2] * len(self.data_split)
        self.objtype_split[0] = obj_type
        self._N_data_objects = len(self.data_split)
        self._N_data_channels = 1

    def _split_hyperspectral(self):
        """Set _Object_type, axes except Z, data_split, objtype_split _N_data_objects, _N_data_channels"""
        obj_type = 21
        self._Object_type = self._mountains_object_types[obj_type]
        sigaxes_iter = iter(ax for ax in self.signal_dict["axes"] if ax["navigate"])
        self.Yaxis = next(sigaxes_iter)
        self.Xaxis = next(sigaxes_iter)
        self.Taxis = next(ax for ax in self.signal_dict["axes"] if not ax["navigate"])
        self.data_split = [self.signal_dict["data"]]
        self.objtype_split = [obj_type]
        self._N_data_objects = 1
        self._N_data_channels = 1

    def _split_data_alongaxis(self, axis: dict):
        """Split the data in a series of lower-dim datasets that can be exported to
        a surface / profile file"""
        idx = self.signal_dict["axes"].index(axis)
        # return idx
        datasplit = []
        for dslice in np.rollaxis(self.signal_dict["data"], idx):
            datasplit.append(dslice)
        return datasplit

    def _norm_data(self, data: np.ndarray, is_special: bool):
        """Normalize input data to 16-bits or 32-bits ints and initialize an axis on which the data is normalized.

        Args:
            data (np.ndarray): dataset
            is_special (bool): whether NaNs get sent to N.M points in the sur format and apply saturation

        Raises:
            MountainsMapFileError: raised if input is of complex type
            MountainsMapFileError: raised if input is of unsigned int type
            MountainsMapFileError: raised if input is of int > 32 bits type

        Returns:
            tuple[int,int,int,float,float,np.ndarray[int]]: pointsize, Zmin, Zmax, Zscale, Zoffset, data_int
        """
        data_type = data.dtype

        if np.issubdtype(data_type, np.complexfloating):
            raise MountainsMapFileError(
                "digitalsurf file formats do not support export of complex data. Convert data to real-value representations before before export"
            )
        elif np.issubdtype(data_type, bool):
            pointsize = 16
            Zmin = 0
            Zmax = 1
            Zscale = 1
            Zoffset = 0
            data_int = data.astype(np.int16)
        elif data_type == np.uint8:
            warnings.warn("np.uint8 datatype exported as np.int16.")
            pointsize = 16
            Zmin, Zmax, Zscale, Zoffset = self._norm_signed_int(data, is_special)
            data_int = data.astype(np.int16)
        elif data_type == np.uint16:
            warnings.warn("np.uint16 datatype exported as np.int32")
            pointsize = 32  # Pointsize has to be 16 or 32 in surf format
            Zmin, Zmax, Zscale, Zoffset = self._norm_signed_int(data, is_special)
            data_int = data.astype(np.int32)
        elif np.issubdtype(data_type, np.unsignedinteger):
            raise MountainsMapFileError(
                "digitalsurf file formats do not support unsigned int >16bits. Convert data to signed integers before export."
            )
        elif data_type == np.int8:
            pointsize = 16  # Pointsize has to be 16 or 32 in surf format
            Zmin, Zmax, Zscale, Zoffset = self._norm_signed_int(data, is_special)
            data_int = data.astype(np.int16)
        elif data_type == np.int16:
            pointsize = 16
            Zmin, Zmax, Zscale, Zoffset = self._norm_signed_int(data, is_special)
            data_int = data
        elif data_type == np.int32:
            pointsize = 32
            data_int = data
            Zmin, Zmax, Zscale, Zoffset = self._norm_signed_int(data, is_special)
        elif np.issubdtype(data_type, np.integer):
            raise MountainsMapFileError(
                "digitalsurf file formats do not support export integers larger than 32 bits. Convert data to 32-bit representation before exporting"
            )
        elif np.issubdtype(data_type, np.floating):
            pointsize = 32
            Zmin, Zmax, Zscale, Zoffset, data_int = self._norm_float(data, is_special)

        return pointsize, Zmin, Zmax, Zscale, Zoffset, data_int

    def _norm_signed_int(self, data: np.ndarray, is_special: bool = False):
        """Normalized data of integer type. No normalization per se, but the Zmin and Zmax
        threshold are set if saturation flagging is asked."""
        # There are no NaN values for integers. Special points means saturation of integer scale.
        data_int_min = np.iinfo(data.dtype).min
        data_int_max = np.iinfo(data.dtype).max

        is_satlo = (data == data_int_min).sum() >= 1 and is_special
        is_sathi = (data == data_int_max).sum() >= 1 and is_special

        Zmin = data_int_min + 1 if is_satlo else data.min()
        Zmax = data_int_max - 1 if is_sathi else data.max()
        Zscale = 1.0
        Zoffset = Zmin

        return Zmin, Zmax, Zscale, Zoffset

    def _norm_float(
        self,
        data: np.ndarray,
        is_special: bool = False,
    ):
        """Normalize float data on a 32 bits int scale. Inherently lossy
        but that's how things are with mountainsmap files."""

        Zoffset_f = np.nanmin(data)
        Zmax_f = np.nanmax(data)
        is_nan = np.any(np.isnan(data))

        if is_special and is_nan:
            Zmin = -(2 ** (32 - 1)) + 2
            Zmax = 2**32 + Zmin - 3
        else:
            Zmin = -(2 ** (32 - 1))
            Zmax = 2**32 + Zmin - 1

        Zscale = (Zmax_f - Zoffset_f) / (Zmax - Zmin)
        data_int = (data - Zoffset_f) / Zscale + Zmin

        if is_special and is_nan:
            data_int[np.isnan(data)] = Zmin - 2

        data_int = data_int.astype(np.int32)

        return Zmin, Zmax, Zscale, Zoffset_f, data_int

    def _get_Zname_Zunit(self, metadata: dict):
        """Attempt reading Z-axis name and Unit from metadata.Signal.Quantity field.
        Return empty str if do not exist.

        Returns:
            tuple[str,str]: Zname,Zunit
        """
        quantitystr: str = metadata.get("Signal", {}).get("quantity", "")
        quantitystr = quantitystr.strip()
        quantity = quantitystr.split(" ")
        if len(quantity) > 1:
            Zunit = quantity.pop()
            Zunit = Zunit.strip("()")
            Zname = " ".join(quantity)
        elif len(quantity) == 1:
            Zname = quantity.pop()
            Zunit = ""

        return Zname, Zunit

    def _build_workdict(
        self,
        data: np.ndarray,
        obj_type: int,
        metadata: dict = {},
        comment: str = "",
        is_special: bool = True,
        compressed: bool = True,
        object_name: str = "",
        operator_name: str = "",
        absolute: int = 0,
        private_zone: bytes = b"",
        client_zone: bytes = b"",
    ):
        """Populate _work_dict with the"""

        if not compressed:
            self._work_dict["_01_Signature"]["value"] = (
                "DIGITAL SURF"  # DSCOMPRESSED by default
            )
        else:
            self._work_dict["_01_Signature"]["value"] = (
                "DSCOMPRESSED"  # DSCOMPRESSED by default
            )

        # self._work_dict['_02_Format']['value'] = 0 # Dft. other possible value is 257 for MacintoshII computers with Motorola CPUs. Obv not supported...
        self._work_dict["_03_Number_of_Objects"]["value"] = self._N_data_objects
        # self._work_dict['_04_Version']['value'] = 1 # Version number. Always default.
        self._work_dict["_05_Object_Type"]["value"] = obj_type
        self._work_dict["_06_Object_Name"]["value"] = (
            object_name  # Obsolete, DOS-version only (Not supported)
        )
        self._work_dict["_07_Operator_Name"]["value"] = (
            operator_name  # Should be settable from kwargs
        )
        self._work_dict["_08_P_Size"]["value"] = self._N_data_channels

        self._work_dict["_09_Acquisition_Type"]["value"] = (
            0  # AFM data only, could be inferred
        )
        self._work_dict["_10_Range_Type"]["value"] = (
            0  # Only 1 for high-range (z-stage scanning), AFM data only, could be inferred
        )

        self._work_dict["_11_Special_Points"]["value"] = int(is_special)

        self._work_dict["_12_Absolute"]["value"] = (
            absolute  # Probably irrelevant in most cases. Absolute vs rel heights (for profilometers), can be inferred
        )
        self._work_dict["_13_Gauge_Resolution"]["value"] = (
            0.0  # Probably irrelevant. Only for profilometers (maybe AFM), can be inferred
        )

        # T-axis acts as W-axis for spectrum / hyperspectrum surfaces.
        if obj_type in [21]:
            ws = self.Taxis.get("size", 0)
        else:
            ws = 0
        self._work_dict["_14_W_Size"]["value"] = ws

        bsize, Zmin, Zmax, Zscale, Zoffset, data_int = self._norm_data(data, is_special)
        Zname, Zunit = self._get_Zname_Zunit(metadata)

        # Axes element set regardless of object size
        self._work_dict["_15_Size_of_Points"]["value"] = bsize
        self._work_dict["_16_Zmin"]["value"] = Zmin
        self._work_dict["_17_Zmax"]["value"] = Zmax
        self._work_dict["_18_Number_of_Points"]["value"] = self.Xaxis.get("size", 1)
        self._work_dict["_19_Number_of_Lines"]["value"] = self.Yaxis.get("size", 1)
        # This needs to be this way due to the way we export our hyp maps
        self._work_dict["_20_Total_Nb_of_Pts"]["value"] = self.Xaxis.get(
            "size", 1
        ) * self.Yaxis.get("size", 1)

        self._work_dict["_21_X_Spacing"]["value"] = self.Xaxis.get("scale", 0.0)
        self._work_dict["_22_Y_Spacing"]["value"] = self.Yaxis.get("scale", 0.0)
        self._work_dict["_23_Z_Spacing"]["value"] = Zscale
        self._work_dict["_24_Name_of_X_Axis"]["value"] = self.Xaxis.get("name", "")
        self._work_dict["_25_Name_of_Y_Axis"]["value"] = self.Yaxis.get("name", "")
        self._work_dict["_26_Name_of_Z_Axis"]["value"] = Zname
        self._work_dict["_27_X_Step_Unit"]["value"] = self.Xaxis.get("units", "")
        self._work_dict["_28_Y_Step_Unit"]["value"] = self.Yaxis.get("units", "")
        self._work_dict["_29_Z_Step_Unit"]["value"] = Zunit
        self._work_dict["_30_X_Length_Unit"]["value"] = self.Xaxis.get("units", "")
        self._work_dict["_31_Y_Length_Unit"]["value"] = self.Yaxis.get("units", "")
        self._work_dict["_32_Z_Length_Unit"]["value"] = Zunit
        self._work_dict["_33_X_Unit_Ratio"]["value"] = 1
        self._work_dict["_34_Y_Unit_Ratio"]["value"] = 1
        self._work_dict["_35_Z_Unit_Ratio"]["value"] = 1

        # _36_Imprint  -> Obsolete
        # _37_Inverted -> Always No
        # _38_Levelled -> Always No
        # _39_Obsolete -> Obsolete

        dt: datetime.datetime = get_date_time_from_metadata(
            metadata, formatting="datetime"
        )
        if dt is not None:
            self._work_dict["_40_Seconds"]["value"] = dt.second
            self._work_dict["_41_Minutes"]["value"] = dt.minute
            self._work_dict["_42_Hours"]["value"] = dt.hour
            self._work_dict["_43_Day"]["value"] = dt.day
            self._work_dict["_44_Month"]["value"] = dt.month
            self._work_dict["_45_Year"]["value"] = dt.year
            self._work_dict["_46_Day_of_week"]["value"] = dt.weekday()

        # _47_Measurement_duration -> Nonsaved and non-metadata, but float in seconds

        if compressed:
            data_bin = self._compress_data(
                data_int, nstreams=1
            )  # nstreams hard-set to 1. Could be unlocked in the future
            compressed_size = len(data_bin)
        else:
            fmt = (
                "<h" if self._work_dict["_15_Size_of_Points"]["value"] == 16 else "<i"
            )  # select between short and long integers
            data_bin = data_int.ravel().astype(fmt).tobytes()
            compressed_size = 0

        self._work_dict["_48_Compressed_data_size"]["value"] = (
            compressed_size  # Obsolete in case of non-compressed
        )

        # _49_Obsolete

        comment_len = len(f"{comment}".encode("latin-1"))
        if comment_len >= 2**15:
            warnings.warn("Comment exceeding max length of 32.0 kB and will be cropped")
            comment_len = np.int16(2**15 - 1)

        self._work_dict["_50_Comment_size"]["value"] = comment_len

        privatesize = len(private_zone)
        if privatesize >= 2**15:
            warnings.warn(
                "Private size exceeding max length of 32.0 kB and will be cropped"
            )
            privatesize = np.uint16(2**15 - 1)

        self._work_dict["_51_Private_size"]["value"] = privatesize

        self._work_dict["_52_Client_zone"]["value"] = client_zone

        self._work_dict["_53_X_Offset"]["value"] = self.Xaxis.get("offset", 0.0)
        self._work_dict["_54_Y_Offset"]["value"] = self.Yaxis.get("offset", 0.0)
        self._work_dict["_55_Z_Offset"]["value"] = Zoffset
        self._work_dict["_56_T_Spacing"]["value"] = self.Taxis.get("scale", 0.0)
        self._work_dict["_57_T_Offset"]["value"] = self.Taxis.get("offset", 0.0)
        self._work_dict["_58_T_Axis_Name"]["value"] = self.Taxis.get("name", "")
        self._work_dict["_59_T_Step_Unit"]["value"] = self.Taxis.get("units", "")

        self._work_dict["_60_Comment"]["value"] = comment

        self._work_dict["_61_Private_zone"]["value"] = private_zone
        self._work_dict["_62_points"]["value"] = data_bin

    # Read methods
    def _read_sur_file(self):
        """Read the binary, possibly compressed, content of the surface
        file. Surface files can be encoded as single or a succession
        of objects. The file is thus read iteratively and from metadata of the
        first file"""

        with open(self.filename, "rb") as f:
            # We read the first object
            self._read_single_sur_object(f)
            # We append the first object to the content list
            self._append_work_dict_to_content()
            # Lookup how many objects are stored in the file and save
            self._N_data_objects = self._get_work_dict_key_value(
                "_03_Number_of_Objects"
            )
            self._N_data_channels = self._get_work_dict_key_value("_08_P_Size")

            # Determine how many objects we need to read, at least 1 object and 1 channel
            # even if metadata is set to 0 (happens sometimes)
            n_objects_to_read = max(self._N_data_channels, 1) * max(
                self._N_data_objects, 1
            )

            # Lookup what object type we are dealing with and save
            self._Object_type = DigitalSurfHandler._mountains_object_types[
                self._get_work_dict_key_value("_05_Object_Type")
            ]

            # if more than 1
            if n_objects_to_read > 1:
                # continue reading until everything is done
                for i in range(1, n_objects_to_read):
                    # We read an object
                    self._read_single_sur_object(f)
                    # We append it to content list
                    self._append_work_dict_to_content()

    def _read_single_sur_object(self, file):
        for key, val in self._work_dict.items():
            self._work_dict[key]["value"] = val["b_unpack_fn"](file)
            # print(f"{key}: {self._work_dict[key]['value']}")

    def _append_work_dict_to_content(self):
        """Save the values stored in the work dict in the surface file list"""
        datadict = deepcopy({key: val["value"] for key, val in self._work_dict.items()})
        self._list_sur_file_content.append(datadict)

    def _move_values_to_workdict(self, dic: dict):
        for key in self._work_dict:
            self._work_dict[key]["value"] = deepcopy(dic[key])

    def _get_work_dict_key_value(self, key):
        return self._work_dict[key]["value"]

    # Signal dictionary methods
    def _build_sur_dict(self):
        """Create a signal dict with an unpacked object"""

        # If the signal is of the type spectrum or hypercard
        if self._Object_type in ["_HYPCARD"]:
            self._build_hyperspectral_map()
        elif self._Object_type in ["_SPECTRUM"]:
            self._build_spectrum()
        elif self._Object_type in ["_PROFILE"]:
            self._build_general_1D_data()
        elif self._Object_type in ["_PROFILESERIE"]:
            self._build_1D_series()
        elif self._Object_type in ["_BINARYIMAGE"]:
            self._build_surface()
            self.signal_dict.update({"post_process": [self.post_process_binary]})
        elif self._Object_type in ["_SURFACE", "_INTENSITYIMAGE"]:
            self._build_surface()
        elif self._Object_type in ["_SURFACESERIE"]:
            self._build_surface_series()
        elif self._Object_type in ["_MULTILAYERSURFACE"]:
            self._build_surface_series()
        elif self._Object_type in ["_RGBSURFACE"]:
            self._build_RGB_surface()
        elif self._Object_type in ["_RGBIMAGE"]:
            self._build_RGB_image()
        elif self._Object_type in ["_RGBINTENSITYSURFACE"]:
            self._build_RGB_surface()
        elif self._Object_type in ["_SERIESOFRGBIMAGES"]:
            self._build_RGB_image_series()
        else:
            raise MountainsMapFileError(
                f"{self._Object_type} is not a supported mountain object."
            )

        return self.signal_dict

    @staticmethod
    def _build_Xax(unpacked_dict, ind=0, nav=False, binned=False):
        """Return X axis dictionary from an unpacked dict. index int and navigate
        boolean can be optionally passed. Default 0 and False respectively."""
        xax = {
            "name": unpacked_dict["_24_Name_of_X_Axis"],
            "size": unpacked_dict["_18_Number_of_Points"],
            "index_in_array": ind,
            "scale": unpacked_dict["_21_X_Spacing"],
            "offset": unpacked_dict["_53_X_Offset"],
            "units": unpacked_dict["_27_X_Step_Unit"],
            "navigate": nav,
            "is_binned": binned,
        }
        return xax

    @staticmethod
    def _build_Yax(unpacked_dict, ind=1, nav=False, binned=False):
        """Return X axis dictionary from an unpacked dict. index int and navigate
        boolean can be optionally passed. Default 1 and False respectively."""
        yax = {
            "name": unpacked_dict["_25_Name_of_Y_Axis"],
            "size": unpacked_dict["_19_Number_of_Lines"],
            "index_in_array": ind,
            "scale": unpacked_dict["_22_Y_Spacing"],
            "offset": unpacked_dict["_54_Y_Offset"],
            "units": unpacked_dict["_28_Y_Step_Unit"],
            "navigate": nav,
            "is_binned": binned,
        }
        return yax

    @staticmethod
    def _build_Tax(unpacked_dict, size_key, ind=0, nav=True, binned=False):
        """Return T axis dictionary from an unpacked surface object dict.
        Unlike x and y axes, the size key can be determined from various keys:
        _14_W_Size, _15_Size_of_Points or _03_Number_of_Objects. index int
        and navigate boolean can be optionally passed. Default 0 and
        True respectively."""

        # The T axis is somewhat special because it is only defined on series
        # and is thus only navigation. It is only defined on the first object
        # in a serie.
        # Here it needs to be checked that the T axis scale is not 0 Otherwise
        # it raises hyperspy errors
        scale = unpacked_dict["_56_T_Spacing"]
        if scale == 0:
            scale = 1

        tax = {
            "name": unpacked_dict["_58_T_Axis_Name"],
            "size": unpacked_dict[size_key],
            "index_in_array": ind,
            "scale": scale,
            "offset": unpacked_dict["_57_T_Offset"],
            "units": unpacked_dict["_59_T_Step_Unit"],
            "navigate": nav,
            "is_binned": binned,
        }
        return tax

    # Build methods for individual surface objects
    def _build_hyperspectral_map(
        self,
    ):
        """Build a hyperspectral map. Hyperspectral maps are single-object
        files with datapoints of _14_W_Size length"""

        # Check that the object contained only one object.
        # Probably overkill at this point but better safe than sorry
        if len(self._list_sur_file_content) != 1:
            raise MountainsMapFileError(
                "Input {:s} File is not of Hyperspectral type".format(self._Object_type)
            )

        # We get the dictionary with all the data
        hypdic = self._list_sur_file_content[0]

        # Add all the axes to the signal dict
        self.signal_dict["axes"].append(self._build_Yax(hypdic, ind=0, nav=True))
        self.signal_dict["axes"].append(self._build_Xax(hypdic, ind=1, nav=True))
        # Wavelength axis in hyperspectral surface files are stored as T Axis
        # with length set as _14_W_Size
        self.signal_dict["axes"].append(
            self._build_Tax(hypdic, "_14_W_Size", ind=2, nav=False)
        )

        # We reshape the data in the correct format
        self.signal_dict["data"] = hypdic["_62_points"].reshape(
            hypdic["_19_Number_of_Lines"],
            hypdic["_18_Number_of_Points"],
            hypdic["_14_W_Size"],
        )

        self._set_metadata_and_original_metadata(hypdic)

    def _build_general_1D_data(
        self,
    ):
        """Build general 1D Data objects. Currently work with spectra"""

        # Check that the object contained only one object.
        # Probably overkill at this point but better safe than sorry
        if len(self._list_sur_file_content) != 1:
            raise MountainsMapFileError("Corrupt file")

        # We get the dictionary with all the data
        hypdic = self._list_sur_file_content[0]

        # Add the axe to the signal dict
        self.signal_dict["axes"].append(self._build_Xax(hypdic, ind=0, nav=False))

        # We reshape the data in the correct format
        self.signal_dict["data"] = hypdic["_62_points"]

        # Build the metadata
        self._set_metadata_and_original_metadata(hypdic)

    def _build_spectrum(
        self,
    ):
        """Build spectra objects. Spectra and 1D series of spectra are
        saved in the same object."""

        # We get the dictionary with all the data
        hypdic = self._list_sur_file_content[0]

        # If there is more than 1 spectrum also add the navigation axis
        if hypdic["_19_Number_of_Lines"] != 1:
            self.signal_dict["axes"].append(self._build_Yax(hypdic, ind=0, nav=True))

        # Add the signal axis_src to the signal dict
        self.signal_dict["axes"].append(self._build_Xax(hypdic, ind=1, nav=False))

        # We reshape the data in the correct format.
        # Edit: the data is now squeezed for unneeded dimensions
        data_shape = (hypdic["_19_Number_of_Lines"], hypdic["_18_Number_of_Points"])
        data_array = np.squeeze(hypdic["_62_points"].reshape(data_shape, order="C"))

        self.signal_dict["data"] = data_array

        self._set_metadata_and_original_metadata(hypdic)

    def _build_1D_series(
        self,
    ):
        """Build a series of 1D objects. The T axis is navigation and set from
        the first object"""

        # First object dictionary
        hypdic = self._list_sur_file_content[0]

        # Metadata are set from first dictionary
        self._set_metadata_and_original_metadata(hypdic)

        # Add the series-axis to the signal dict
        self.signal_dict["axes"].append(
            self._build_Tax(hypdic, "_03_Number_of_Objects", ind=0, nav=True)
        )

        # All objects must share the same signal axis
        self.signal_dict["axes"].append(self._build_Xax(hypdic, ind=1, nav=False))

        # We put all the data together
        data = []
        for obj in self._list_sur_file_content:
            data.append(obj["_62_points"])

        self.signal_dict["data"] = np.stack(data)

    def _build_surface(
        self,
    ):
        """Build a surface"""

        # Check that the object contained only one object.
        # Probably overkill at this point but better safe than sorry
        if len(self._list_sur_file_content) != 1:
            raise MountainsMapFileError("CORRUPT {:s} FILE".format(self._Object_type))

        # We get the dictionary with all the data
        hypdic = self._list_sur_file_content[0]

        # Add all the axes to the signal dict
        self.signal_dict["axes"].append(self._build_Yax(hypdic, ind=0, nav=False))
        self.signal_dict["axes"].append(self._build_Xax(hypdic, ind=1, nav=False))

        # We reshape the data in the correct format
        shape = (hypdic["_19_Number_of_Lines"], hypdic["_18_Number_of_Points"])
        self.signal_dict["data"] = hypdic["_62_points"].reshape(shape)

        self._set_metadata_and_original_metadata(hypdic)

    def _build_surface_series(
        self,
    ):
        """Build a series of surfaces. The T axis is navigation and set from
        the first object"""

        # First object dictionary
        hypdic = self._list_sur_file_content[0]

        # Metadata are set from first dictionary
        self._set_metadata_and_original_metadata(hypdic)

        # Add the series-axis to the signal dict
        self.signal_dict["axes"].append(
            self._build_Tax(hypdic, "_03_Number_of_Objects", ind=0, nav=True)
        )

        # All objects must share the same signal axes
        self.signal_dict["axes"].append(self._build_Yax(hypdic, ind=1, nav=False))
        self.signal_dict["axes"].append(self._build_Xax(hypdic, ind=2, nav=False))

        # shape of the surfaces in the series
        shape = (hypdic["_19_Number_of_Lines"], hypdic["_18_Number_of_Points"])
        # We put all the data together
        data = []
        for obj in self._list_sur_file_content:
            data.append(obj["_62_points"].reshape(shape))

        self.signal_dict["data"] = np.stack(data)

    def _build_RGB_surface(
        self,
    ):
        """Build a series of surfaces. The T axis is navigation and set from
        P Size"""

        # First object dictionary
        hypdic = self._list_sur_file_content[0]

        # Metadata are set from first dictionary
        self._set_metadata_and_original_metadata(hypdic)

        # Add the series-axis to the signal dict
        self.signal_dict["axes"].append(
            self._build_Tax(hypdic, "_08_P_Size", ind=0, nav=True)
        )

        # All objects must share the same signal axes
        self.signal_dict["axes"].append(self._build_Yax(hypdic, ind=1, nav=False))
        self.signal_dict["axes"].append(self._build_Xax(hypdic, ind=2, nav=False))

        # shape of the surfaces in the series
        shape = (hypdic["_19_Number_of_Lines"], hypdic["_18_Number_of_Points"])
        # We put all the data together
        data = []
        for obj in self._list_sur_file_content:
            data.append(obj["_62_points"].reshape(shape))

        # Pushing data into the dictionary
        self.signal_dict["data"] = np.stack(data)

    def _build_RGB_image(
        self,
    ):
        """Build an RGB image. The T axis is navigation and set from
        P Size"""

        # First object dictionary
        hypdic = self._list_sur_file_content[0]

        # Metadata are set from first dictionary
        self._set_metadata_and_original_metadata(hypdic)

        # Add the series-axis to the signal dict
        self.signal_dict["axes"].append(
            self._build_Tax(hypdic, "_08_P_Size", ind=0, nav=True)
        )

        # All objects must share the same signal axes
        self.signal_dict["axes"].append(self._build_Yax(hypdic, ind=1, nav=False))
        self.signal_dict["axes"].append(self._build_Xax(hypdic, ind=2, nav=False))

        # shape of the surfaces in the series
        shape = (hypdic["_19_Number_of_Lines"], hypdic["_18_Number_of_Points"])
        # We put all the data together
        data = []
        for obj in self._list_sur_file_content:
            data.append(obj["_62_points"].reshape(shape))

        # Pushing data into the dictionary
        self.signal_dict["data"] = np.stack(data)

        self.signal_dict.update({"post_process": [self.post_process_RGB]})

    def _build_RGB_image_series(
        self,
    ):
        # First object dictionary
        hypdic = self._list_sur_file_content[0]

        # Metadata are set from first dictionary
        self._set_metadata_and_original_metadata(hypdic)

        # We build the series-axis
        self.signal_dict["axes"].append(
            self._build_Tax(hypdic, "_03_Number_of_Objects", ind=0, nav=False)
        )

        # All objects must share the same signal axes
        self.signal_dict["axes"].append(self._build_Yax(hypdic, ind=1, nav=False))
        self.signal_dict["axes"].append(self._build_Xax(hypdic, ind=2, nav=False))

        # shape of the surfaces in the series
        shape = (hypdic["_19_Number_of_Lines"], hypdic["_18_Number_of_Points"])
        nimg = hypdic["_03_Number_of_Objects"]
        nchan = hypdic["_08_P_Size"]
        # We put all the data together
        data = np.empty(shape=(nimg, *shape, nchan))
        i = 0
        for imgidx in range(nimg):
            for chanidx in range(nchan):
                obj = self._list_sur_file_content[i]
                data[imgidx, ..., chanidx] = obj["_62_points"].reshape(shape)
                i += 1

        # for obj in self._list_sur_file_content:
        #     data.append(obj["_62_points"].reshape(shape))

        # data = np.stack(data)

        # data = data.reshape(nimg,nchan,*shape)
        # data = np.rollaxis(data,)

        # Pushing data into the dictionary
        self.signal_dict["data"] = data

        # Add the color-axis to the signal dict so it can be consumed
        self.signal_dict["axes"].append(
            self._build_Tax(hypdic, "_08_P_Size", ind=3, nav=True)
        )

        self.signal_dict.update({"post_process": [self.post_process_RGB]})

    # Metadata utility methods

    @staticmethod
    def _choose_signal_type(unpacked_dict: dict) -> str:
        """Choose the correct signal type based on the header content"""
        if unpacked_dict.get("_26_Name_of_Z_Axis") in ["CL Intensity"]:
            return "CL"
        else:
            return ""

    def _build_generic_metadata(self, unpacked_dict):
        """Return a minimalistic metadata dictionary according to hyperspy
        format. Accept a dictionary as an input because dictionary with the
        headers of a mountians object.

        Parameters
        ----------
        unpacked_dict: dictionary from the header of a surface file

        Returns
        -------
        metadict: dictionnary in the hyperspy metadata format

        """

        # Formatting for complicated strings. We add parentheses to units
        qty_unit = unpacked_dict["_29_Z_Step_Unit"]
        # We strip unit from any character that might pre-format it
        qty_unit = qty_unit.strip(" \t\n()[]")
        # If unit string is still truthy after strip we add parentheses
        if qty_unit:
            qty_unit = "({:s})".format(qty_unit)

        quantity_str = " ".join([unpacked_dict["_26_Name_of_Z_Axis"], qty_unit]).strip()

        # Date and time are set in metadata only if all values are not set to 0

        date = [
            unpacked_dict["_45_Year"],
            unpacked_dict["_44_Month"],
            unpacked_dict["_43_Day"],
        ]
        if not all(v == 0 for v in date):
            date_str = "{:4d}-{:02d}-{:02d}".format(date[0], date[1], date[2])
        else:
            date_str = ""

        time = [
            unpacked_dict["_42_Hours"],
            unpacked_dict["_41_Minutes"],
            unpacked_dict["_40_Seconds"],
        ]

        if not all(v == 0 for v in time):
            time_str = "{:02d}:{:02d}:{:02d}".format(time[0], time[1], time[2])
        else:
            time_str = ""

        signal_type = self._choose_signal_type(unpacked_dict)

        # Metadata dictionary initialization
        metadict = {
            "General": {
                "authors": unpacked_dict["_07_Operator_Name"],
                "date": date_str,
                "original_filename": os.path.split(self.filename)[1],
                "time": time_str,
            },
            "Signal": {
                "quantity": quantity_str,
                "signal_type": signal_type,
            },
        }

        return metadict

    def _build_original_metadata(
        self,
    ):
        """Builds a metadata dictionary from the header"""
        original_metadata_dict = {}

        # Iteration over Number of data objects
        for i in range(self._N_data_objects):
            # Iteration over the Number of Data channels
            for j in range(max(self._N_data_channels, 1)):
                # Creating a dictionary key for each object
                k = (i + 1) * (j + 1)
                key = "Object_{:d}_Channel_{:d}".format(i, j)
                original_metadata_dict.update({key: {}})

                # We load one full object header
                a = self._list_sur_file_content[k - 1]

                # Save it as original metadata dictionary
                headerdict = {
                    "H" + k.lstrip("_"): a[k]
                    for k in a
                    if k not in ("_62_points", "_61_Private_zone")
                }

                original_metadata_dict[key].update({"Header": headerdict})

                # The second dictionary might contain custom mountainsmap params
                # Check if it is the case and append it to original metadata if yes
                valid_comment = self._check_comments(a["_60_Comment"], "$", "=")
                if valid_comment:
                    parsedict = parse_metadata(a["_60_Comment"], "$", "=")
                    parsedict = {k.lstrip("_"): m for k, m in parsedict.items()}
                    original_metadata_dict[key].update({"Parsed": parsedict})

        return original_metadata_dict

    def _build_signal_specific_metadata(
        self,
    ) -> dict:
        """Build additional metadata specific to signal type.
        return a dictionary for update in the metadata."""
        if self.signal_dict["metadata"]["Signal"]["signal_type"] == "CL":
            return self._map_CL_metadata()
        else:
            return {}

    def _map_SEM_metadata(self) -> dict:
        """Return SEM metadata according to hyperspy specifications"""
        atto_omd = self.signal_dict["original_metadata"]
        # get nested dictionaries in an error-handling way
        atto_omd = atto_omd.get("Object_0_Channel_0", {})
        atto_omd = atto_omd.get("Parsed", {})
        if not atto_omd:
            return {}
        else:
            sem = atto_omd.get("SEM", {})
            stage_image = atto_omd.get("SITE IMAGE", {})

        sem_metadata = {
            # "beam_current": None,
            "beam_energy": sem.get("Beam Energy"),
            "beam_energy_units": sem.get("Beam Energy_units"),
            # "probe_area" : None,
            # "convergence_angle": None,
            "magnification": sem.get("Real Magnification"),
            "microscope": "Attolight Allalin",
            "Stage": {
                "rotation": stage_image.get("stage_rotation_z"),
                "rotation_units": "deg",
                "tilt_alpha": stage_image.get("stage_rotation_x"),
                "tilt_alpha_units": "deg",
                "tilt_beta": stage_image.get("stage_rotation_y"),
                "tilt_beta_units": "deg",
                "x": stage_image.get("stage_position_x"),
                "x_units": "mm",
                "y": stage_image.get("stage_position_y"),
                "y_units": "mm",
                "z": stage_image.get("stage_position_z"),
                "z_units": "mm",
            },
        }

        return sem_metadata

    def _map_Spectrometer_metadata(self) -> dict:
        """return Spectrometer metadata according to lumispy specifications"""
        atto_omd = self.signal_dict["original_metadata"]
        # get nested dictionaries in an error-handling way
        atto_omd = atto_omd.get("Object_0_Channel_0", {})
        atto_omd = atto_omd.get("Parsed", {})
        if not atto_omd:
            return {}
        else:
            spectrometer = atto_omd.get("SPECTROMETER", {})

        spectrometer_metadata = {
            # "model":
            # "acquisition_mode": ,
            "entrance_slit_width": spectrometer.get("Entrance slit width"),
            "entrance_slit_width_units": spectrometer.get("Entrance slit width_units"),
            "exit_slit_width": spectrometer.get("Exit slit width"),
            "exit_slit_width_units": spectrometer.get("Exit slit width_units"),
            "central_wavelength": spectrometer.get("Central wavelength"),
            "central_wavelength_units": spectrometer.get("Central wavelength_units"),
            # "start_wavelength(nm)":
            # "step_size(nm)"
            "Grating": spectrometer.get("Grating"),
            "groove_density": spectrometer.get("Grating - Groove Density"),
            "groove_density_units": spectrometer.get("Grating - Groove Density_units"),
            "blazing_wavelength": spectrometer.get("Grating - Blaze Angle"),
            "blazing_wavelength_units": spectrometer.get("Central wavelength_units"),
            "Filter": {"filter_type": spectrometer.get("Filter")},
        }

        return spectrometer_metadata

    def _map_spectral_detector_metadata(self) -> dict:
        """return Spectrometer metadata according to lumispy specifications"""

        atto_omd = self.signal_dict["original_metadata"]
        # get nested dictionaries in an error-handling way
        atto_omd = atto_omd.get("Object_0_Channel_0", {})
        atto_omd = atto_omd.get("Parsed", {})
        if not atto_omd:
            return {}
        else:
            ccd = atto_omd.get("CCD", {})

        spectral_detector_metadata = {
            "detector_type": "CCD",
            "model": ccd.get("Camera Model"),
            # "frames": ,
            "integration_time": ccd.get("Exposure Time"),
            "integration_time_units": ccd.get("Exposure Time"),
            # "saturation_fraction": CCD.get(''),
            "binning": (ccd.get("ReadMode"), ccd.get("Horizontal Binning")),
            # "processing": ,
            # "sensor_roi": ,
            "pixel_size": ccd.get("Pixel Width"),
            "pixel_size_units": ccd.get("Pixel Width_units"),
        }

        return spectral_detector_metadata

    def _map_CL_metadata(self) -> dict:
        """Build CL-signal-specific metadata. Currently maps from the hyperspy metadata format"""

        cl_metadata_dict = {
            "Acquisition_instrument": {
                "SEM": self._map_SEM_metadata(),
                "Spectrometer": self._map_Spectrometer_metadata(),
                "Detector": self._map_spectral_detector_metadata(),
            }
        }

        return cl_metadata_dict

    def _set_metadata_and_original_metadata(self, unpacked_dict):
        """Run successively _build_metadata and _build_original_metadata
        and set signal dictionary with results"""

        self.signal_dict["metadata"] = self._build_generic_metadata(unpacked_dict)
        self.signal_dict["original_metadata"] = self._build_original_metadata()
        self.signal_dict["metadata"].update(self._build_signal_specific_metadata())

    @staticmethod
    def _check_comments(commentsstr, prefix, delimiter):
        """Check if comment string is parsable into metadata dictionary.
        Some specific lines (empty or starting with @@) will be ignored,
        but any non-ignored line must conform to being a title line (beginning
        with the titlestart indicator) or being parsable (starting with Prefix
        and containing the key data delimiter). At the end, the comment is
        considered parsable if it contains minimum 1 parsable line and no
        non-ignorable non-parsable non-title line.

        Parameters
        ----------
        commentsstr: string containing comments
        prefix: string (or char) character assumed to start each line.
        '$' if a .sur file.
        delimiter: string that delimits the keyword from value. always '='

        Returns
        -------
        valid: boolean
        """

        # Titlestart markers start with Prefix ($) followed by underscore
        titlestart = "{:s}_".format(prefix)

        # We start by assuming that the comment string is valid
        # but contains 0 valid (= parsable) lines
        valid = True
        n_valid_lines = 0

        for line in commentsstr.splitlines():
            # Here we ignore any empty line or line starting with @@
            ignore = False
            if not line.strip() or line.startswith("@@"):
                ignore = True
            # If the line must not be ignored
            if not ignore:
                # If line starts with a titlestart marker we it counts as valid
                if line.startswith(titlestart):
                    n_valid_lines += 1
                # if it does not we check that it has the delimiter and
                # starts with prefix
                else:
                    # We check that line contains delimiter and prefix
                    # if it does the count of valid line is increased
                    if delimiter in line and line.startswith(prefix):
                        n_valid_lines += 1
                    # Otherwise the whole comment string is thrown out
                    else:
                        valid = False

        # finally, it total number of valid line is 0 we throw out this comments
        if n_valid_lines == 0:
            valid = False

        # return falsiness of the string.
        return valid

    @staticmethod
    def _get_comment_dict(
        original_metadata: dict, method: str = "auto", custom: dict = {}
    ) -> dict:
        """Return the dictionary used to set the dataset comments (akA custom parameters) while exporting a file.

        By default (method='auto'), tries to identify if the object was originally imported by rosettasciio
        from a digitalsurf .sur/.pro file with a comment field parsed as original_metadata (i.e.
        Object_0_Channel_0.Parsed). In that case, digitalsurf ignores non-parsed original metadata
        (ie .sur/.pro file headers). If the original metadata contains multiple objects with
        non-empty parsed content (Object_0_Channel_0.Parsed, Object_0_Channel_1.Parsed etc...), only
        the first non-empty X.Parsed sub-dictionary is returned. This falls back on returning the
        raw 'original_metadata'

        Optionally the raw 'original_metadata' dictionary can be exported (method='raw'),
        a custom dictionary provided by the user (method='custom'), or no comment at all (method='off')

        Args:
            method (str, optional): method to export. Defaults to 'auto'.
            custom (dict, optional): custom dictionary. Ignored unless method is set to 'custom', Defaults to {}.

        Raises:
            MountainsMapFileError: if an invalid key is entered

        Returns:
            dict: dictionary to be exported as a .sur object
        """
        if method == "raw":
            return original_metadata
        elif method == "custom":
            return custom
        elif method == "off":
            return {}
        elif method == "auto":
            pattern = re.compile(r"Object_\d*_Channel_\d*")
            omd = original_metadata
            # filter original metadata content of dict type and matching pattern.
            validfields = [
                omd[key]
                for key in omd
                if pattern.match(key) and isinstance(omd[key], dict)
            ]
            # In case none match, give up filtering and return raw
            if not validfields:
                return omd
            # In case some match, return first non-empty "Parsed" sub-dict
            for field in validfields:
                # Return none for non-existing "Parsed" key
                candidate = field.get("Parsed")
                # For non-none, non-empty dict-type candidate
                if candidate and isinstance(candidate, dict):
                    return candidate
                # dict casting for non-none but non-dict candidate
                elif candidate is not None:
                    return {"Parsed": candidate}
                # else none candidate, or empty dict -> do nothing
            # Finally, if valid fields are present but no candidate
            # did a non-empty return, it is safe to return empty
            return {}
        else:
            raise MountainsMapFileError(
                "Non-valid method for setting mountainsmap file comment. Choose one of: 'auto','raw','custom','off' "
            )

    @staticmethod
    def _stringify_dict(omd: dict):
        """Pack nested dictionary metadata into a string. Pack dictionary-type elements
        into digitalsurf "Section title" metadata type ('$_ preceding section title). Pack
        other elements into equal-sign separated key-value pairs.

        Supports the key-units logic {'key': value, 'key_units': 'un'} used in hyperspy.
        """

        # Separate dict into list of keys and list of values to authorize index-based pop/insert
        keys_queue = list(omd.keys())
        vals_queue = list(omd.values())
        # commentstring to be returned
        cmtstr: str = ""
        # Loop until queues are empty
        while keys_queue:
            # pop first object
            k = keys_queue.pop(0)
            v = vals_queue.pop(0)
            # if object is header
            if isinstance(v, dict):
                cmtstr += f"$_{k}\n"
                keys_queue = list(v.keys()) + keys_queue
                vals_queue = list(v.values()) + vals_queue
            else:
                try:
                    ku_idx = keys_queue.index(k + "_units")
                    has_units = True
                except ValueError:
                    ku_idx = None
                    has_units = False

                if has_units:
                    _ = keys_queue.pop(ku_idx)
                    vu = vals_queue.pop(ku_idx)
                    cmtstr += f"${k} = {v.__str__()} {vu}\n"
                else:
                    cmtstr += f"${k} = {v.__str__()}\n"

        return cmtstr

    # Post processing
    @staticmethod
    def post_process_RGB(signal):
        signal = signal.transpose()
        max_data = np.max(signal.data)
        if max_data <= 255:
            signal.change_dtype("uint8")
            signal.change_dtype("rgb8")
        elif max_data <= 65536:
            signal.change_dtype("uint16")
            signal.change_dtype("rgb16")
        else:
            warnings.warn(
                """RGB-announced data could not be converted to
            uint8 or uint16 datatype"""
            )

        return signal

    @staticmethod
    def post_process_binary(signal):
        signal.change_dtype("bool")
        return signal

    # pack/unpack binary quantities

    @staticmethod
    def _get_uint16(file):
        """Read a 16-bits int with a user-definable default value if
        no file is given"""
        b = file.read(2)
        return struct.unpack("<H", b)[0]

    @staticmethod
    def _set_uint16(file, val):
        file.write(struct.pack("<H", val))

    @staticmethod
    def _get_int16(
        file,
    ):
        """Read a 16-bits int with a user-definable default value if
        no file is given"""
        b = file.read(2)
        return struct.unpack("<h", b)[0]

    @staticmethod
    def _set_int16(file, val):
        file.write(struct.pack("<h", val))

    @staticmethod
    def _get_str(file, size, encoding="latin-1"):
        """Read a str of defined size in bytes with a user-definable default
        value if no file is given"""
        read_str = file.read(size).decode(encoding)
        return read_str.strip(" \t\n")

    @staticmethod
    def _set_str(file, val, size, encoding="latin-1"):
        """Write a str of defined size in bytes to a file. struct.pack
        will automatically trim the string if it is too long"""
        file.write(
            struct.pack(
                "<{:d}s".format(size),
                f"{val}".ljust(size).encode(encoding),
            )
        )

    @staticmethod
    def _get_int32(file):
        """Read a 32-bits int with a user-definable default value if no
        file is given"""
        b = file.read(4)
        return struct.unpack("<i", b)[0]

    @staticmethod
    def _set_int32(file, val):
        """Write a 32-bits int in a file f"""
        file.write(struct.pack("<i", val))

    @staticmethod
    def _get_float(
        file,
    ):
        """Read a 4-bytes (single precision) float from a binary file f with a
        default value if no file is given"""
        return struct.unpack("<f", file.read(4))[0]

    @staticmethod
    def _set_float(file, val):
        """write a 4-bytes (single precision) float in a file"""
        file.write(struct.pack("<f", val))

    @staticmethod
    def _get_uint32(
        file,
    ):
        b = file.read(4)
        return struct.unpack("<I", b)[0]

    @staticmethod
    def _set_uint32(file, val):
        file.write(struct.pack("<I", val))

    @staticmethod
    def _get_bytes(file, size):
        return file.read(size)

    @staticmethod
    def _set_bytes(file, val, size):
        file.write(struct.pack("<{:d}s".format(size), val))

    def _unpack_comment(self, file, encoding="latin-1"):
        commentsize = self._get_work_dict_key_value("_50_Comment_size")
        return self._get_str(file, commentsize, encoding)

    def _pack_comment(self, file, val, encoding="latin-1"):
        commentsize = self._get_work_dict_key_value("_50_Comment_size")
        self._set_str(file, val, commentsize)

    def _unpack_private(self, file, encoding="latin-1"):
        privatesize = self._get_work_dict_key_value("_51_Private_size")
        return self._get_str(file, privatesize, encoding)

    def _pack_private(self, file, val, encoding="latin-1"):
        privatesize = self._get_work_dict_key_value("_51_Private_size")
        self._set_str(file, val, privatesize)

    def _is_data_int(
        self,
    ):
        """Determine wether data consists of unscaled int values.
        This is not the case for all objects. Surface and surface series can admit
        this logic. In theory, hyperspectral studiables as well but it is more convenient
        to use them as floats due to typical data treatment in hyperspy (scaling etc)"""
        objtype = self._mountains_object_types[
            self._get_work_dict_key_value("_05_Object_Type")
        ]
        if objtype in ["_SURFACESERIE", "_SURFACE"]:
            scale = self._get_work_dict_key_value(
                "_23_Z_Spacing"
            ) / self._get_work_dict_key_value("_35_Z_Unit_Ratio")
            offset = self._get_work_dict_key_value("_55_Z_Offset")
            if float(scale).is_integer() and float(offset).is_integer():
                return True
            else:
                return False
        else:
            return False

    def _is_data_scaleint(
        self,
    ):
        """Digitalsurf image formats are not stored as their raw int values, but instead are
        scaled and a scale / offset is set so that the data scales down to uint. Why this is
        done this way is not clear to me."""
        objtype = self._mountains_object_types[
            self._get_work_dict_key_value("_05_Object_Type")
        ]
        if objtype in [
            "_RGBIMAGE",
            "_SERIESOFRGBIMAGES",
            "_INTENSITYIMAGE",
        ]:
            return True
        else:
            return False

    def _is_data_bin(self):
        """Digitalsurf image formats can be binary sometimes"""
        objtype = self._mountains_object_types[
            self._get_work_dict_key_value("_05_Object_Type")
        ]
        if objtype in [
            "_BINARYIMAGE",
        ]:
            return True
        else:
            return False

    def _get_uncompressed_datasize(self) -> int:
        """Return size of uncompressed data in bytes"""
        psize = int(self._get_work_dict_key_value("_15_Size_of_Points") / 8)
        # Datapoints in X and Y dimensions
        Npts_tot = self._get_work_dict_key_value("_20_Total_Nb_of_Pts")
        # Datasize in WL. max between value and 1 as often W_Size saved as 0
        Wsize = max(self._get_work_dict_key_value("_14_W_Size"), 1)
        # Wsize = 1

        datasize = Npts_tot * Wsize * psize

        return datasize

    def _unpack_data(self, file, encoding="latin-1"):
        # Size of datapoints in bytes. Always int16 (==2) or 32 (==4)
        psize = int(self._get_work_dict_key_value("_15_Size_of_Points") / 8)
        dtype = np.int16 if psize == 2 else np.int32

        if self._get_work_dict_key_value("_01_Signature") != "DSCOMPRESSED":
            # If the points are not compressed we need to read the exact
            # size occupied by datapoints

            # Datapoints in X and Y dimensions
            Npts_tot = self._get_work_dict_key_value("_20_Total_Nb_of_Pts")
            # Datasize in WL
            Wsize = max(self._get_work_dict_key_value("_14_W_Size"), 1)

            # We need to take into account the fact that Wsize is often
            # set to 0 instead of 1 in non-spectral data to compute the
            # space occupied by data in the file
            readsize = Npts_tot * psize * Wsize

            buf = file.read(readsize)
            # Read the exact size of the data
            _points = np.frombuffer(buf, dtype=dtype)

        else:
            # If the points are compressed do the uncompress magic. There
            # the space occupied by datapoints is self-taken care of.
            # Number of streams
            _directoryCount = self._get_uint32(file)

            # empty lists to store the read sizes
            rawLengthData = []
            zipLengthData = []
            for i in range(_directoryCount):
                # Size of raw and compressed data sizes in each stream
                rawLengthData.append(self._get_uint32(file))
                zipLengthData.append(self._get_uint32(file))

            # We now initialize an empty binary string to store the results
            rawData = b""
            for i in range(_directoryCount):
                # And for each stream we uncompress using zip lib
                # and add it to raw string
                rawData += zlib.decompress(file.read(zipLengthData[i]))

            # Finally numpy converts it to a numeric object
            _points = np.frombuffer(rawData, dtype=dtype)

        # rescale data
        # We set non measured points to nan according to .sur ways
        nm = []
        if self._get_work_dict_key_value("_11_Special_Points") == 1:
            # has non-measured points
            nm = _points == self._get_work_dict_key_value("_16_Zmin") - 2

        Zmin = self._get_work_dict_key_value("_16_Zmin")
        scale = self._get_work_dict_key_value(
            "_23_Z_Spacing"
        ) / self._get_work_dict_key_value("_35_Z_Unit_Ratio")
        offset = self._get_work_dict_key_value("_55_Z_Offset")

        # Packing data into ints or float, with or without scaling.
        if self._is_data_int():
            pass  # Case left here for future modification
        elif self._is_data_scaleint():
            _points = (_points.astype(float) - Zmin) * scale + offset
            _points = np.round(_points).astype(int)
        elif self._is_data_bin():
            pass
        else:
            _points = (_points.astype(float) - Zmin) * scale + offset
            _points[nm] = np.nan  # Ints have no nans

        # Return the points, rescaled
        return _points

    def _pack_data(self, file, val, encoding="latin-1"):
        """This needs to be special because it writes until the end of file."""
        # Also valid for uncompressed
        if self._get_work_dict_key_value("_01_Signature") != "DSCOMPRESSED":
            datasize = self._get_uncompressed_datasize()
        else:
            datasize = self._get_work_dict_key_value("_48_Compressed_data_size")
        self._set_bytes(file, val, datasize)

    @staticmethod
    def _compress_data(data_int, nstreams: int = 1) -> bytes:
        """Pack the input data using the digitalsurf zip approach and return the result as a
        binary string ready to be written onto a file."""

        if nstreams <= 0 or nstreams > 8:
            raise MountainsMapFileError(
                "Number of compression streams must be >= 1, <= 8"
            )

        bstr = b""
        bstr += struct.pack("<I", nstreams)

        data_1d = data_int.ravel()
        tot_size = len(data_1d)

        if tot_size % nstreams != 0:
            streamlen = len(data_1d) // nstreams + 1
        else:
            streamlen = len(data_1d) // nstreams

        zipdat = []
        for i in range(nstreams):
            # Extract sub-array and its raw size
            data_comp = data_1d[i * streamlen : (i + 1) * streamlen]
            rdl = len(data_comp) * data_comp.itemsize
            # rdl = len(data_comp.tobytes())

            # Compress and extract compressed size
            data_zip = zlib.compress(data_comp)
            cdl = len(data_zip)

            # Export bytes
            bstr += struct.pack("<I", rdl)
            bstr += struct.pack("<I", cdl)
            zipdat.append(data_zip)

        for zd in zipdat:
            bstr += zd

        return bstr


def file_reader(filename, lazy=False):
    """
    Read a mountainsmap ``.sur`` or ``.pro`` file.

    Parameters
    ----------
    %s
    %s

    %s
    """
    if lazy is not False:
        raise NotImplementedError("Lazy loading is not supported.")
    ds = DigitalSurfHandler(filename)

    ds._read_sur_file()

    surdict = ds._build_sur_dict()

    return [
        surdict,
    ]


def file_writer(
    filename,
    signal: dict,
    set_comments: str = "auto",
    is_special: bool = False,
    compressed: bool = True,
    comments: dict = {},
    object_name: str = "",
    operator_name: str = "",
    absolute: int = 0,
    private_zone: bytes = b"",
    client_zone: bytes = b"",
):
    """
    Write a mountainsmap ``.sur`` or ``.pro`` file.

    Parameters
    ----------
    %s
    %s
    set_comments : str , default = 'auto'
        Whether comments should be a simplified version original_metadata ('auto'),
        the raw original_metadata dictionary ('raw'), skipped ('off'), or supplied
        by the user as an additional kwarg ('custom').
    is_special : bool , default = False
        If True, NaN values in the dataset or integers reaching the boundary of the
        signed int-representation are flagged as non-measured or saturating,
        respectively. If False, those values are not flagged (converted to valid points).
    compressed : bool, default =True
        If True, compress the data in the export file using zlib. Can help dramatically
        reduce the file size.
    comments : dict, default = {}
        Set a custom dictionnary in the comments field of the exported file.
        Ignored if set_comments is not set to 'custom'.
    object_name : str, default = ''
        Set the object name field in the output file.
    operator_name : str, default = ''
        Set the operator name field in the exported file.
    absolute : int, default = 0,
        Unsigned int capable of flagging whether surface heights are relative (0) or
        absolute (1). Higher unsigned int values can be used to distinguish several
        data series sharing internal reference.
    private_zone : bytes, default = b'',
        Set arbitrary byte-content in the private_zone field of exported file metadata.
        Maximum size is 32.0 kB and content will be cropped if this size is exceeded.
    client_zone : bytes, default = b''
        Set arbitrary byte-content in the client_zone field of exported file metadata.
        Maximum size is 128 B and and content will be cropped if this size is exceeded.
    """
    ds = DigitalSurfHandler(filename=filename)
    ds.signal_dict = signal

    ds._build_sur_file_contents(
        set_comments,
        is_special,
        compressed,
        comments,
        object_name,
        operator_name,
        absolute,
        private_zone,
        client_zone,
    )
    ds._write_sur_file()


file_reader.__doc__ %= (FILENAME_DOC, LAZY_UNSUPPORTED_DOC, RETURNS_DOC)
file_writer.__doc__ %= (FILENAME_DOC, SIGNAL_DOC)