File: _emd_ncem.py

package info (click to toggle)
python-rosettasciio 0.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,644 kB
  • sloc: python: 36,638; xml: 2,582; makefile: 20; ansic: 4
file content (555 lines) | stat: -rw-r--r-- 20,552 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.

# The EMD format is a hdf5 standard proposed at Lawrence Berkeley
# National Lab (see https://emdatasets.com/ for more information).
# FEI later developed another EMD format, also based on the hdf5 standard. This
# reader first checked if the file have been saved by Velox (FEI EMD format)
# and use either the EMD class or the FEIEMDReader class to read the file.
# Writing file is only supported for EMD Berkeley file.


import logging
import math
import os
import re

import dask.array as da
import h5py
import numpy as np

from rsciio._hierarchical import get_signal_chunks
from rsciio.utils.tools import _UREG, DTBox

EMD_VERSION = "0.2"

_logger = logging.getLogger(__name__)


class EMD_NCEM:
    """Class for reading and writing the Berkeley variant of the electron
    microscopy datasets (EMD) file format. It reads files EMD NCEM, including
    files generated by the prismatic software.

    Attributes
    ----------
    dictionaries: list
        List of dictionaries which are passed to the file_reader.
    """

    def read_file(self, file, lazy=None, dataset_path=None, stack_group=None):
        """
        Read the data from an emd file

        Parameters
        ----------
        file : file handle
            Handle of the file to read the data from.
        lazy : bool, optional
            Load the data lazily. The default is False.
        dataset_path : None, str or list of str
            Path of the dataset. If None, load all supported datasets,
            otherwise the specified dataset. The default is None.
        stack_group : bool, optional
            Stack datasets of groups with common name. Relevant for emd file
            version >= 0.5 where groups can be named 'group0000', 'group0001',
            etc.
        """
        self.file = file
        self.lazy = lazy

        if isinstance(dataset_path, list):
            if stack_group:
                _logger.warning(
                    "The argument 'dataset_path' and "
                    "'stack_group' are not compatible."
                )
            stack_group = False
            dataset_path = dataset_path.copy()
        elif isinstance(dataset_path, str):
            dataset_path = [dataset_path]
        # if 'datasets' is not provided, we load all valid datasets
        elif dataset_path is None:
            dataset_path = self.find_dataset_paths(file)
            if stack_group is None:
                stack_group = True

        self.dictionaries = []

        while len(dataset_path) > 0:
            path = dataset_path.pop(0)
            group_paths = [os.path.dirname(path)]
            dataset_name = os.path.basename(path)

            if stack_group:
                # Find all the datasets in this group which are also listed
                # in dataset_path:
                # 1. add them to 'group_paths'
                # 2. remove them from 'dataset_path'
                group_basename = group_paths[0]
                if self._is_prismatic_file and "ppotential" not in path:
                    # In prismatic file, the group name have '0000' except
                    # for 'ppotential'
                    group_basename = group_basename[:-4]
                for _path in dataset_path[:]:
                    if path != _path and group_basename in _path:
                        group_paths.append(os.path.dirname(_path))
                        dataset_path.remove(_path)
                title = os.path.basename(group_basename)
            else:
                title = os.path.basename(group_paths[0])

            _logger.debug(f"Loading dataset: {path}")

            om = self._parse_original_metadata()
            data, axes = self._read_data_from_groups(
                group_paths, dataset_name, title, om
            )

            md = self._parse_metadata(group_paths[0], title=title)
            d = {
                "data": data,
                "axes": axes,
                "metadata": md,
                "original_metadata": om,
            }
            self.dictionaries.append(d)

    @classmethod
    def find_dataset_paths(cls, file, supported_dataset=True):
        """
        Find the paths of all groups containing valid EMD data.

        Parameters
        ----------
        file : hdf5 file handle
        supported_dataset : bool, optional
            If True (default), returns the paths of all supported datasets,
            otherwise returns the path of the non-supported other dataset.
            This is relevant for groups containing auxiliary dataset(s) which
            are not supported by HyperSpy or described in the EMD NCEM dataset
            specification.

        Returns
        -------
        datasets : list
            List of path to these group.

        """

        def print_dataset_only(item_name, item, dataset_only):
            if supported_dataset is os.path.basename(item_name).startswith(
                (
                    "data",
                    "counted_datacube",
                    "datacube",
                    "diffractionslice",
                    "realslice",
                    "pointlistarray",
                    "pointlist",
                )
            ):
                if isinstance(item, h5py.Dataset):
                    grp = file.get(os.path.dirname(item_name))
                    if cls._get_emd_group_type(grp):
                        dataset_path.append(item_name)

        def f(item_name, item):
            return print_dataset_only(item_name, item, supported_dataset)

        dataset_path = []
        file.visititems(f)

        return dataset_path

    @property
    def _is_prismatic_file(self):
        return True if "4DSTEM_simulation" in self.file.keys() else False

    @property
    def _is_py4DSTEM_file(self):
        return True if "4DSTEM_experiment" in self.file.keys() else False

    @staticmethod
    def _get_emd_group_type(group):
        """Return the value of the 'emd_group_type' attribute if it exist,
        otherwise returns False
        """
        return group.attrs.get("emd_group_type", False)

    @staticmethod
    def _read_dataset(dataset):
        """Read dataset and use the h5py AsStrWrapper when the dataset is of
        string type (h5py 3.0 and newer)
        """
        chunks = dataset.chunks
        if chunks is None:
            chunks = "auto"
        if h5py.check_string_dtype(dataset.dtype) and hasattr(dataset, "asstr"):
            # h5py 3.0 and newer
            # https://docs.h5py.org/en/3.0.0/strings.html
            data = dataset.asstr()[:]
        else:
            data = dataset[:]
        return data, chunks

    def _read_emd_version(self, group):
        """Return the group version if the group is an EMD group, otherwise
        return None.
        """
        if "version_major" in group.attrs.keys():
            version = [
                str(group.attrs.get(v)) for v in ["version_major", "version_minor"]
            ]
            version = ".".join(version)
            return version
        else:
            return None

    def _read_data_from_groups(
        self, group_path, dataset_name, stack_key=None, original_metadata={}
    ):
        axes = []
        transpose_required = True if dataset_name != "datacube" else False

        dataset_list = [self.file.get(f"{key}/{dataset_name}") for key in group_path]

        if None in dataset_list:
            raise IOError("Dataset can't be found.")

        if len(dataset_list) > 1:
            # Squeeze the data only when
            if self.lazy:
                data_list = [
                    da.from_array(*self._read_dataset(d)) for d in dataset_list
                ]
                if transpose_required:
                    data_list = [da.transpose(d) for d in data_list]
                data = da.stack(data_list)
                data = da.squeeze(data)
            else:
                data_list = [self._read_dataset(d)[0] for d in dataset_list]
                if transpose_required:
                    data_list = [np.transpose(d) for d in data_list]
                data = np.stack(data_list).squeeze()
        else:
            d = dataset_list[0]
            if self.lazy:
                data = da.from_array(*self._read_dataset(d))
            else:
                data = self._read_dataset(d)[0]
            if transpose_required:
                data = data.transpose()

        shape = data.shape

        if len(dataset_list) > 1:
            offset, scale, units = 0, 1, None
            if self._is_prismatic_file and "depth" in stack_key:
                simu_om = original_metadata.get("simulation_parameters", {})
                if "numSlices" in simu_om.keys():
                    scale = simu_om["numSlices"]
                    scale *= simu_om.get("sliceThickness", 1.0)
                if "zStart" in simu_om.keys():
                    offset = simu_om["zStart"]
                    # when zStart = 0, the first image is not at zero but
                    # the first output: numSlices * sliceThickness (=scale)
                    if offset == 0:
                        offset = scale
                units = "Å"
                total_thickness = (
                    simu_om.get("tile", 0)[2] * simu_om.get("cellDimension", 0)[0]
                )
                if not math.isclose(
                    total_thickness, len(dataset_list) * scale, rel_tol=1e-4
                ):
                    _logger.warning(
                        "Depth axis is non-uniform and its offset "
                        "and scale can't be set accurately."
                    )
                    # When non-uniform/non-linear axis are implemented, adjust
                    # the final depth to the "total_thickness"
                    offset, scale, units = 0, 1, None
            axes.append(
                {
                    "index_in_array": 0,
                    "name": stack_key if stack_key is not None else None,
                    "offset": offset,
                    "scale": scale,
                    "size": len(dataset_list),
                    "units": units,
                    "navigate": True,
                }
            )

            array_indices = np.arange(1, len(shape))
            dim_indices = array_indices
        else:
            array_indices = np.arange(0, len(shape))
            # dim indices start form 1
            dim_indices = array_indices + 1

        if transpose_required:
            dim_indices = dim_indices[::-1]

        for arr_index, dim_index in zip(array_indices, dim_indices):
            dim = self.file.get(f"{group_path[0]}/dim{dim_index}")
            offset, scale = self._parse_axis(dim)
            if self._is_prismatic_file:
                if dataset_name == "datacube":
                    # For datacube (4D STEM), the signal is detector coordinate
                    sig_dim = ["dim3", "dim4"]
                else:
                    sig_dim = ["dim1", "dim2"]

                navigate = dim.name.split("/")[-1] not in sig_dim

            else:
                navigate = False
            axes.append(
                {
                    "index_in_array": arr_index,
                    "name": self._parse_attribute(dim, "name"),
                    "units": self._parse_attribute(dim, "units"),
                    "size": shape[arr_index],
                    "offset": offset,
                    "scale": scale,
                    "navigate": navigate,
                }
            )
        return data, axes

    def _parse_attribute(self, obj, key):
        value = obj.attrs.get(key)
        if value is not None:
            if not isinstance(value, str):
                value = value.decode()
            if key == "units":
                # Get all the units
                units_list = re.findall(r"(\[.+?\])", value)
                units_list = [u[1:-1].replace("_", "") for u in units_list]
                value = " * ".join(units_list)
                try:
                    units = _UREG.parse_units(value)
                    value = f"{units:~}"
                except Exception:
                    # In case it fails parsing units
                    pass
        return value

    def _parse_metadata(self, group_basename, title=""):
        filename = self.file if isinstance(self.file, str) else self.file.filename
        md = {
            "General": {
                "title": title.replace("_depth", ""),
                "original_filename": os.path.split(filename)[1],
            },
            "Signal": {"signal_type": ""},
        }
        if "CBED" in group_basename:
            md["Signal"]["signal_type"] = "electron_diffraction"
        return md

    def _parse_original_metadata(self):
        f = self.file
        om = {"EMD_version": self._read_emd_version(self.file.get("/"))}
        for group_name in ["microscope", "sample", "user", "comments"]:
            group = f.get(group_name)
            if group is not None:
                om.update(
                    {group_name: {key: value for key, value in group.attrs.items()}}
                )

        if self._is_prismatic_file:
            md_mapping = {
                "i": "filenameAtoms",
                "a": "algorithm",
                "fx": "interpolationFactorX",
                "fy": "interpolationFactorY",
                "F": "numFP",
                "ns": "numSlices",
                "te": "includeThermalEffects",
                "oc": "includeOccupancy",
                "3D": "save3DOutput",
                "4D": "save3DOutput",
                "DPC": "saveDPC_CoM",
                "ps": "savePotentialSlices",
                "nqs": "nyquistSampling",
                "px": "realspacePixelSizeX",
                "py": "realspacePixelSizeY",
                "P": "potBound",
                "s": "sliceThickness",
                "zs": "zStart",
                "E": "E0",
                "A": "alphaBeamMax",
                "rx": "probeStepX",
                "ry": "probeStepY",
                "df": "probeDefocus",
                "sa": "probeSemiangle",
                "d": "detectorAngleStep",
                "tx": "probeXtilt",
                "ty": "probeYtilt",
                "c": "cellDimension",
                "t": "tile",
                "wx": "scanWindowX",
                "wy": "scanWindowY",
                "wxr": "scanWindowX_r",
                "wyr": "scanWindowY_r",
                "2D": "integrationAngle",
            }
            simu_md = f.get(
                "4DSTEM_simulation/metadata/metadata_0/original/simulation_parameters"
            )
            om["simulation_parameters"] = {
                md_mapping.get(k, k): v for k, v in simu_md.attrs.items()
            }

        return om

    @staticmethod
    def _parse_axis(axis_data):
        """
        Estimate, offset, scale from a 1D array
        """
        if axis_data.ndim > 0 and np.issubdtype(axis_data.dtype, np.number):
            offset, scale = axis_data[0], np.diff(axis_data).mean()
        else:
            # This is a string, return default values
            # When non-uniform axis is supported we should be able to parse
            # string
            offset, scale = 0, 1
        return offset, scale

    def write_file(self, file, signal, **kwargs):
        """
        Write signal to file.

        Parameters
        ----------
        file : str of h5py file handle
            If str, filename of the file to write, otherwise a h5py file handle
        signal : instance of hyperspy signal
            The signal to save.
        **kwargs : dict
            Keyword argument are passed to the ``h5py.Group.create_dataset``
            method.

        """
        if isinstance(file, str):
            emd_file = h5py.File(file, "w")
        else:
            emd_file = file
        # Write version:
        ver_maj, ver_min = EMD_VERSION.split(".")
        emd_file.attrs["version_major"] = ver_maj
        emd_file.attrs["version_minor"] = ver_min

        # Write attribute from the original_metadata
        om = DTBox(signal["original_metadata"], box_dots=True)
        for group_name in ["microscope", "sample", "user", "comments"]:
            group = emd_file.require_group(group_name)
            d = om.get(group_name, None)
            if d is not None:
                for key, value in d.items():
                    group.attrs[key] = value

        # Write signals:
        signal_group = emd_file.require_group("signals")
        signal_group.attrs["emd_group_type"] = 1
        self._write_signal_to_group(signal_group, signal, **kwargs)
        emd_file.close()

    def _write_signal_to_group(self, signal_group, signal, chunks=None, **kwargs):
        # Save data:
        title = signal["metadata"]["General"]["title"] or "__unnamed__"
        dataset = signal_group.require_group(title)
        data = signal["data"].T
        maxshape = tuple(None for _ in data.shape)
        if np.issubdtype(data.dtype, np.dtype("U")):
            # Saving numpy unicode type is not supported in h5py
            data = data.astype(np.dtype("S"))
        if chunks is None:
            if isinstance(data, da.Array):
                # For lazy dataset, by default, we use the current dask chunking
                chunks = tuple([c[0] for c in data.chunks])
            else:
                signal_axes = [
                    i for i, axis in enumerate(signal["axes"]) if not axis["navigate"]
                ]
                chunks = get_signal_chunks(data.shape, data.dtype, signal_axes)
        # when chunks=True, we leave it to h5py `guess_chunk`
        elif chunks is not True:
            # Need to reverse since the data is transposed when saving
            chunks = chunks[::-1]

        dataset.create_dataset(
            "data", data=data, maxshape=maxshape, chunks=chunks, **kwargs
        )

        array_indices = np.arange(0, len(data.shape))
        dim_indices = (array_indices + 1)[::-1]
        # Iterate over all dimensions:
        for i, dim_index in zip(array_indices, dim_indices):
            key = f"dim{dim_index}"
            axis = signal["axes"][i]
            offset = axis["offset"]
            scale = axis["scale"]
            dim = dataset.create_dataset(key, data=[offset, offset + scale])
            name = axis["name"]
            if name is None:
                name = ""
            dim.attrs["name"] = name
            units = axis["units"]
            if units is None:
                units = ""
            else:
                units = "[{}]".format("_".join(list(units)))
            dim.attrs["units"] = units
        # Write metadata:
        dataset.attrs["emd_group_type"] = 1
        for key, value in signal["metadata"]["Signal"].items():
            try:  # If something h5py can't handle is saved in the metadata...
                dataset.attrs[key] = value
            except Exception:  # ...let the user know what could not be added!
                _logger.warning(
                    "The following information couldn't be "
                    f"written in the file: {key}: {value}"
                )


def read_emd_version(group):
    """Function to read the emd file version from a group. The EMD version is
    saved in the attributes 'version_major' and 'version_minor'.

    Parameters
    ----------
    group : hdf5 group
        The group to extract the version from.

    Returns
    -------
    file version : str
        Empty string if the file version is not defined in this group

    """
    major = group.attrs.get("version_major", None)
    minor = group.attrs.get("version_minor", None)
    if major is not None and minor is not None:
        return f"{major}.{minor}"
    else:
        return ""