1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
|
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.
# The EMD format is a hdf5 standard proposed at Lawrence Berkeley
# National Lab (see https://emdatasets.com/ for more information).
# FEI later developed another EMD format, also based on the hdf5 standard. This
# reader first checked if the file have been saved by Velox (FEI EMD format)
# and use either the EMD class or the FEIEMDReader class to read the file.
# Writing file is only supported for EMD Berkeley file.
import json
import logging
import os
import time
from datetime import datetime
import dask.array as da
import numpy as np
from dateutil import tz
from rsciio.utils.elements import atomic_number2name
from rsciio.utils.hdf5 import (
_get_keys_from_group,
_parse_metadata,
_parse_sub_data_group_metadata,
)
from rsciio.utils.tools import _UREG, convert_units
_logger = logging.getLogger(__name__)
def _parse_json(v, encoding="utf-8"):
return json.loads(v.decode(encoding))
def _get_detector_metadata_dict(om, detector_name):
detectors_dict = om["Detectors"]
# find detector dict from the detector_name
for key in detectors_dict:
if detectors_dict[key]["DetectorName"] == detector_name:
return detectors_dict[key]
return None
PRUNE_WARNING = (
"No spectrum stream is present in the file and the "
"spectrum images are saved in a proprietary format, "
"which is not supported by RosettaSciIO. This is "
"because it has been 'pruned' or saved a different "
"software than Velox, e.g. bcf to emd converter. "
"If you want to open this data don't prune the "
"file or read bcf file directly (in case the bcf "
"to emd converter was used)."
)
class FeiEMDReader(object):
"""
Class for reading FEI electron microscopy datasets.
The :class:`~.FeiEMDReader` reads EMD files saved by the FEI Velox
software package.
Attributes
----------
dictionaries: list
List of dictionaries which are passed to the file_reader.
im_type : string
String specifying whether the data is an image, spectrum or
spectrum image.
"""
def __init__(
self,
filename=None,
select_type=None,
first_frame=0,
last_frame=None,
sum_frames=True,
sum_EDS_detectors=True,
rebin_energy=1,
SI_dtype=None,
load_SI_image_stack=False,
lazy=False,
):
# TODO: Finish lazy implementation using the `FrameLocationTable`
# Parallelise streams reading
self.filename = filename
self.select_type = select_type
self.dictionaries = []
self.first_frame = first_frame
self.last_frame = last_frame
self.sum_frames = sum_frames
self.sum_EDS_detectors = sum_EDS_detectors
self.rebin_energy = rebin_energy
self.SI_data_dtype = SI_dtype
self.load_SI_image_stack = load_SI_image_stack
self.lazy = lazy
self.detector_name = None
self.original_metadata = {}
# UUID: label mapping
self._map_label_dict = {}
def read_file(self, f):
self.filename = f.filename
self.version = _parse_json(f["Version"][0])["version"]
_logger.info(f"EMD file version: {self.version}")
self.d_grp = f.get("Data")
self._check_im_type()
for key in ["Displays", "Operations", "SharedProperties", "Features"]:
# In Velox emd v11, the "Operation" group is removed:
# 'operation settings' are moved to \SharedProperties
# \Features link to \SharedProperties\DataReference
# in version <11 \Features linked to \Operations
if key in f.keys():
self._parse_metadata_group(f.get(key), key)
if self.im_type == "SpectrumStream":
self._parse_image_display(f)
self._read_data(self.select_type)
def _read_data(self, select_type):
self.load_images = self.load_SI = self.load_single_spectrum = True
if select_type == "single_spectrum":
self.load_images = self.load_SI = False
elif select_type == "images":
self.load_SI = self.load_single_spectrum = False
elif select_type == "spectrum_image":
self.load_images = self.load_single_spectrum = False
elif select_type is None:
pass
else:
raise ValueError(
"`select_type` parameter takes only: `None`, "
"'single_spectrum', 'images' or 'spectrum_image'."
)
if self.im_type == "Image":
_logger.info("Reading the images.")
self._read_images()
elif self.im_type == "Spectrum":
self._read_single_spectrum()
self._read_images()
elif self.im_type == "SpectrumStream":
self._read_single_spectrum()
_logger.info("Reading the spectrum image.")
t0 = time.time()
self._read_images()
t1 = time.time()
self._read_spectrum_stream()
t2 = time.time()
_logger.info("Time to load images: {} s.".format(t1 - t0))
_logger.info("Time to load spectrum image: {} s.".format(t2 - t1))
def _check_im_type(self):
if "Image" in self.d_grp:
if "SpectrumImage" in self.d_grp:
self.im_type = "SpectrumStream"
else:
self.im_type = "Image"
else:
self.im_type = "Spectrum"
def _read_single_spectrum(self):
if not self.load_single_spectrum:
return
spectrum_grp = self.d_grp.get("Spectrum")
if spectrum_grp is None:
return # No spectra in the file
self.detector_name = "EDS"
for spectrum_sub_group_key in _get_keys_from_group(spectrum_grp):
self.dictionaries.append(
self._read_spectrum(spectrum_grp, spectrum_sub_group_key)
)
def _read_spectrum(self, spectrum_group, spectrum_sub_group_key):
spectrum_sub_group = spectrum_group[spectrum_sub_group_key]
dataset = spectrum_sub_group["Data"]
if self.lazy:
data = da.from_array(dataset, chunks=dataset.chunks).T
else:
data = dataset[:].T
original_metadata = _parse_metadata(spectrum_group, spectrum_sub_group_key)
original_metadata.update(self.original_metadata)
# Can be used in more recent version of velox emd files
self.detector_information = self._get_detector_information(original_metadata)
dispersion, offset, unit = self._get_dispersion_offset(original_metadata)
axes = []
if len(data.shape) == 2:
if data.shape[0] == 1:
# squeeze
data = data[0, :]
else:
axes = [
{
"name": "Stack",
"offset": 0,
"scale": 1,
"size": data.shape[0],
"navigate": True,
}
]
axes.append(
{
"name": "Energy",
"offset": offset,
"scale": dispersion,
"size": data.shape[-1],
"units": "keV",
"navigate": False,
},
)
md = self._get_metadata_dict(original_metadata)
md["Signal"]["signal_type"] = "EDS_TEM"
return {
"data": data,
"axes": axes,
"metadata": md,
"original_metadata": original_metadata,
"mapping": self._get_mapping(),
}
def _read_images(self):
# We need to read the image to get the shape of the spectrum image
if not self.load_images and not self.load_SI:
return
# Get the image data group
image_group = self.d_grp.get("Image")
if image_group is None:
return # No images in the file
# Get all the subgroup of the image data group and read the image for
# each of them
for image_sub_group_key in _get_keys_from_group(image_group):
image = self._read_image(image_group, image_sub_group_key)
if not self.load_images:
# If we don't want to load the images, we stop here
return
self.dictionaries.append(image)
def _read_image(self, image_group, image_sub_group_key):
"""Return a dictionary ready to parse of return to io module"""
image_sub_group = image_group[image_sub_group_key]
original_metadata = _parse_metadata(image_group, image_sub_group_key)
original_metadata.update(self.original_metadata)
# Can be used in more recent version of velox emd files
self.detector_information = self._get_detector_information(original_metadata)
try:
self.detector_name = self._get_detector_name(image_sub_group_key)
except KeyError:
# File version >= 11 doesn't have the "Operations" group anymore
if self.detector_information is not None:
self.detector_name = self.detector_information["DetectorName"]
read_stack = self.load_SI_image_stack or self.im_type == "Image"
h5data = image_sub_group["Data"]
# Get the scanning area shape of the SI from the images
self.spatial_shape = h5data.shape[:-1]
# For Velox FFT data, dtype must be specified and lazy is not
# supported due to special dtype. The data is loaded as-is; to get
# a traditional view the negative half must be created and the data
# must be re-centered
# Similar story for DPC signal
fft_dtype = [
[("realFloatHalfEven", "<f4"), ("imagFloatHalfEven", "<f4")],
[("realFloatHalfOdd", "<f4"), ("imagFloatHalfOdd", "<f4")],
]
dpc_dtype = [("realFloat", "<f4"), ("imagFloat", "<f4")]
if h5data.dtype in fft_dtype or h5data.dtype == dpc_dtype:
_logger.debug("Found an FFT or DPC, loading as Complex2DSignal")
real = h5data.dtype.descr[0][0]
imag = h5data.dtype.descr[1][0]
if self.lazy:
data = da.from_array(h5data, chunks=h5data.chunks)
data = data[real] + 1j * data[imag]
data = da.transpose(data, axes=[2, 0, 1])
else:
data = np.empty(h5data.shape, h5data.dtype)
h5data.read_direct(data)
data = data[real] + 1j * data[imag]
# Set the axes in frame, y, x order
data = np.rollaxis(data, axis=2)
else:
if self.lazy:
data = da.transpose(
da.from_array(h5data, chunks=h5data.chunks), axes=[2, 0, 1]
)
else:
# Workaround for a h5py bug https://github.com/h5py/h5py/issues/977
# Change back to standard API once issue #977 is fixed.
# Preallocate the numpy array and use read_direct method, which is
# much faster in case of chunked data.
# Do not specify dtype in np.empty, slows down substantially!
data = np.empty(h5data.shape)
h5data.read_direct(data)
# Set the axes in frame, y, x order
data = np.rollaxis(data, axis=2)
pix_scale = original_metadata["BinaryResult"].get(
"PixelSize", {"height": 1.0, "width": 1.0}
)
offsets = original_metadata["BinaryResult"].get("Offset", {"x": 0.0, "y": 0.0})
original_units = original_metadata["BinaryResult"].get("PixelUnitX", "")
axes = []
# stack of images
if not read_stack:
data = data[0:1, ...]
if data.shape[0] == 1:
# Squeeze
data = data[0, ...]
i = 0
else:
if "FrameTime" in original_metadata["Scan"]:
frame_time = original_metadata["Scan"]["FrameTime"]
else:
_logger.debug("No Frametime found, likely TEM image stack")
det_ind = original_metadata["BinaryResult"]["DetectorIndex"]
frame_time = original_metadata["Detectors"][f"Detector-{det_ind}"][
"ExposureTime"
]
frame_time, time_unit = self._convert_scale_units(
frame_time, "s", 2 * data.shape[0]
)
axes.append(
{
"index_in_array": 0,
"name": "Time",
"offset": 0,
"scale": frame_time,
"size": data.shape[0],
"units": time_unit,
"navigate": True,
}
)
i = 1
scale_x, x_unit = self._convert_scale_units(
pix_scale["width"], original_units, data.shape[i + 1]
)
# to avoid mismatching units between x and y axis, use the same unit as x
# x is chosen as reference, because scalebar used (usually) the horizonal axis
# and the units conversion is tuned to get decent scale bar
scale_y = convert_units(float(pix_scale["height"]), original_units, x_unit)
# Because "axes" only allows one common unit for offset and scale,
# offset_x, offset_y is converted to the same unit as x_unit
offset_x = convert_units(float(offsets["x"]), original_units, x_unit)
offset_y = convert_units(float(offsets["y"]), original_units, x_unit)
axes.extend(
[
{
"index_in_array": i,
"name": "y",
"offset": offset_y,
"scale": scale_y,
"size": data.shape[i],
"units": x_unit,
"navigate": False,
},
{
"index_in_array": i + 1,
"name": "x",
"offset": offset_x,
"scale": scale_x,
"size": data.shape[i + 1],
"units": x_unit,
"navigate": False,
},
]
)
md = self._get_metadata_dict(original_metadata)
if self.detector_name is not None:
original_metadata["DetectorMetadata"] = _get_detector_metadata_dict(
original_metadata, self.detector_name
)
if image_sub_group_key in self._map_label_dict:
md["General"]["title"] = self._map_label_dict[image_sub_group_key]
return {
"data": data,
"axes": axes,
"metadata": md,
"original_metadata": original_metadata,
"mapping": self._get_mapping(
map_selected_element=False, parse_individual_EDS_detector_metadata=False
),
}
def _get_detector_name(self, key):
def iDPC_or_dDPC(metadata):
return "iDPC" if metadata == "true" else "dDPC"
om = self.original_metadata["Operations"]
keys = [
"CameraInputOperation",
"StemInputOperation",
"SurfaceReconstructionOperation",
"MathematicsOperation",
"DpcOperation",
"IntegrationOperation",
"FftOperation",
]
for k in keys:
if k in om.keys() and k == keys[0]:
for metadata in om[k].items():
# Find the metadata group matching the key in the dataPath
if key in metadata[1]["dataPath"]:
return metadata[1]["cameraName"]
if k in om.keys() and k == keys[1]:
for metadata in om[k].items():
# Find the metadata group matching the key in the dataPath
if key in metadata[1]["dataPath"]:
return metadata[1]["detector"]
if k in om.keys() and k == keys[2]:
for metadata in om[k].items():
# Look first for the key in the unfilteredDataPath
if "unfilteredDataPath" in metadata[1].keys() and (
key in metadata[1]["unfilteredDataPath"]
):
return iDPC_or_dDPC(metadata[1]["integrationMode"])
# Then look for the key in the DataPath
if key in metadata[1]["dataPath"]:
detector_name = iDPC_or_dDPC(metadata[1]["integrationMode"])
if metadata[1]["enableFilter"] == "true":
detector_name = "Filtered {}".format(detector_name)
return detector_name
if k in om.keys() and k == keys[3]:
for metadata in om[k].items():
if key in metadata[1]["dataPath"]:
if metadata[1]["outputs"][0]["inputIndex"] == "0":
return "A-C"
elif metadata[1]["outputs"][0]["inputIndex"] == "1":
return "B-D"
if k in om.keys() and k == keys[4]:
for metadata in om[k].items():
if key in metadata[1]["dataPath"]:
return "DPC"
if k in om.keys() and k == keys[5]:
for metadata in om[k].items():
if key in metadata[1]["dataPath"]:
return "DCFI"
if k in om.keys() and k == keys[6]:
for metadata in om[k].items():
if key in metadata[1]["imageOutputPath"]:
return "Half FFT"
return "Unrecognized_image_signal"
def _get_detector_information(self, om):
# if the `BinaryResult/Detector` is not available, there should be only
# one detector in `Detectors`:
# e.g. original_metadata['Detectors']['Detector-0']
if "BinaryResult" in om.keys():
detector_index = om["BinaryResult"].get("DetectorIndex")
else:
detector_index = 0
if detector_index is not None:
return om["Detectors"]["Detector-{}".format(detector_index)]
else:
return None
def _parse_frame_time(self, original_metadata, factor=1):
try:
frame_time = original_metadata["Scan"]["FrameTime"]
time_unit = "s"
except KeyError:
frame_time, time_unit = None, None
frame_time, time_unit = self._convert_scale_units(frame_time, time_unit, factor)
return frame_time, time_unit
def _parse_image_display(self, f):
if int(self.version) >= 11:
# - /Displays/ImageDisplay contains the list of all the image displays.
# A EDS Map is just an image display.
# - These entries contain a json encoded dictionary that contains
# 'data', 'id', 'settings' and 'title'.
# - The 'id' is the name of the element. 'data' is pointing to the
# data reference in SharedProperties/ImageSeriesDataReference/<UUID>
# which in turn is pointing to the /Data/Image/<UUID> where the image
# data is located.
om_image_display = self.original_metadata["Displays"]["ImageDisplay"]
self._map_label_dict = {}
for v in om_image_display.values():
if "data" in v.keys():
data_key = _parse_json(f.get(v["data"])[0])["dataPath"]
self._map_label_dict[data_key.split("/")[-1]] = v["id"]
else:
image_display_group = f.get("Presentation/Displays/ImageDisplay")
key_list = _get_keys_from_group(image_display_group)
for key in key_list:
v = _parse_json(image_display_group[key][0])
data_key = v["dataPath"].split("/")[-1] # key in data group
self._map_label_dict[data_key] = v["display"]["label"]
def _parse_metadata_group(self, group, group_name):
d = {}
try:
for group_key in _get_keys_from_group(group):
subgroup = group.get(group_key)
if hasattr(subgroup, "keys"):
sub_dict = {}
for subgroup_key in _get_keys_from_group(subgroup):
v = _parse_json(subgroup[subgroup_key][0])
sub_dict[subgroup_key] = v
else:
sub_dict = _parse_json(subgroup[0])
d[group_key] = sub_dict
except IndexError:
_logger.warning("Some metadata can't be read.")
self.original_metadata.update({group_name: d})
def _read_spectrum_stream(self):
if not self.load_SI:
return
self.detector_name = "EDS"
# Try to read the number of frames from Data/SpectrumImage
try:
sig = self.d_grp["SpectrumImage"]
self.number_of_frames = int(
_parse_json(sig[next(iter(sig))]["SpectrumImageSettings"][0])[
"endFramePosition"
]
)
except Exception:
_logger.exception(
"Failed to read the number of frames from Data/SpectrumImage"
)
self.number_of_frames = None
if self.last_frame is None:
self.last_frame = self.number_of_frames
elif self.number_of_frames and self.last_frame > self.number_of_frames:
raise ValueError(
"The `last_frame` cannot be greater than"
" the number of frames, %i for this file." % self.number_of_frames
)
spectrum_stream_group = self.d_grp.get("SpectrumStream")
if spectrum_stream_group is None: # pragma: no cover
# "Pruned" file, EDS SI data are in the
# "SpectrumImage" group
_logger.warning(PRUNE_WARNING)
return
subgroup_keys = _get_keys_from_group(spectrum_stream_group)
if len(subgroup_keys) == 0:
# "Pruned" file: in Velox emd v11, the "SpectrumStream"
# group exists but it is empty
_logger.warning(PRUNE_WARNING)
return
def _read_stream(key):
stream = FeiSpectrumStream(spectrum_stream_group[key], self)
return stream
if self.sum_EDS_detectors:
if len(subgroup_keys) == 1:
_logger.warning("The file contains only one spectrum stream")
# Read the first stream
s0 = _read_stream(subgroup_keys[0])
streams = [s0]
# add other stream streams
if len(subgroup_keys) > 1:
for key in subgroup_keys[1:]:
stream_data = spectrum_stream_group[key]["Data"][:].T[0]
if self.lazy:
s0.spectrum_image = (
s0.spectrum_image
+ s0.stream_to_sparse_array(stream_data=stream_data)
)
else:
s0.stream_to_array(
stream_data=stream_data, spectrum_image=s0.spectrum_image
)
else:
streams = [_read_stream(key) for key in subgroup_keys]
if self.lazy:
for stream in streams:
sa = stream.spectrum_image.astype(self.SI_data_dtype)
stream.spectrum_image = sa
spectrum_image_shape = streams[0].shape
original_metadata = streams[0].original_metadata
original_metadata.update(self.original_metadata)
# Can be used in more recent version of velox emd files
self.detector_information = self._get_detector_information(original_metadata)
pixel_size, offsets, original_units = streams[0].get_pixelsize_offset_unit()
dispersion, offset, unit = self._get_dispersion_offset(original_metadata)
scale_x, x_unit = self._convert_scale_units(
pixel_size["width"], original_units, spectrum_image_shape[1]
)
# to avoid mismatching units between x and y axis, use the same unit as x
# x is chosen as reference, because scalebar used (usually) the horizonal axis
# and the units conversion is tuned to get decent scale bar
scale_y = convert_units(float(pixel_size["height"]), original_units, x_unit)
# Because "axes" only allows one common unit for offset and scale,
# offset_x, offset_y is converted to the same unit as x_unit
offset_x = convert_units(float(offsets["x"]), original_units, x_unit)
offset_y = convert_units(float(offsets["y"]), original_units, x_unit)
i = 0
axes = []
# add a supplementary axes when we import all frames individualy
if not self.sum_frames:
frame_time, time_unit = self._parse_frame_time(
original_metadata, spectrum_image_shape[i]
)
axes.append(
{
"index_in_array": i,
"name": "Time",
"offset": 0,
"scale": frame_time,
"size": spectrum_image_shape[i],
"units": time_unit,
"navigate": True,
}
)
i = 1
axes.extend(
[
{
"index_in_array": i,
"name": "y",
"offset": offset_y,
"scale": scale_y,
"size": spectrum_image_shape[i],
"units": x_unit,
"navigate": True,
},
{
"index_in_array": i + 1,
"name": "x",
"offset": offset_x,
"scale": scale_x,
"size": spectrum_image_shape[i + 1],
"units": x_unit,
"navigate": True,
},
{
"index_in_array": i + 2,
"name": "X-ray energy",
"offset": offset,
"scale": dispersion,
"size": spectrum_image_shape[i + 2],
"units": unit,
"navigate": False,
},
]
)
md = self._get_metadata_dict(original_metadata)
md["Signal"]["signal_type"] = "EDS_TEM"
for stream in streams:
original_metadata = stream.original_metadata
original_metadata.update(self.original_metadata)
self.dictionaries.append(
{
"data": stream.spectrum_image,
"axes": axes,
"metadata": md,
"original_metadata": original_metadata,
"mapping": self._get_mapping(
parse_individual_EDS_detector_metadata=not self.sum_frames
),
}
)
def _get_dispersion_offset(self, original_metadata):
try:
for detectorname, detector in original_metadata["Detectors"].items():
if (
original_metadata["BinaryResult"]["Detector"]
in detector["DetectorName"]
):
dispersion = (
float(detector["Dispersion"]) / 1000.0 * self.rebin_energy
)
offset = float(detector["OffsetEnergy"]) / 1000.0
return dispersion, offset, "keV"
except KeyError:
_logger.warning("The spectrum calibration can't be loaded.")
return 1, 0, None
def _convert_scale_units(self, value, units, factor=1):
if units is None:
return value, units
factor /= 2
v = float(value) * _UREG(units)
converted_v = (factor * v).to_compact()
converted_value = float(converted_v.magnitude / factor)
converted_units = "{:~}".format(converted_v.units)
return converted_value, converted_units
def _get_metadata_dict(self, om):
meta_gen = {}
meta_gen["original_filename"] = os.path.split(self.filename)[1]
if self.detector_name is not None:
meta_gen["title"] = self.detector_name
# We have only one entry in the original_metadata, so we can't use
# the mapping of the original_metadata to set the date and time in
# the metadata: need to set it manually here
try:
if "AcquisitionStartDatetime" in om["Acquisition"].keys():
unix_time = om["Acquisition"]["AcquisitionStartDatetime"]["DateTime"]
# Workaround when the 'AcquisitionStartDatetime' key is missing
# This timestamp corresponds to when the data is stored
elif (
not isinstance(om["CustomProperties"], str)
and "Detectors[BM-Ceta].TimeStamp" in om["CustomProperties"].keys()
):
unix_time = (
float(
om["CustomProperties"]["Detectors[BM-Ceta].TimeStamp"]["value"]
)
/ 1e6
)
date, time = self._convert_datetime(unix_time).split("T")
meta_gen["date"] = date
meta_gen["time"] = time
meta_gen["time_zone"] = self._get_local_time_zone()
except UnboundLocalError:
# Error seems to come from h5py, covered in the test suite
# Added in https://github.com/hyperspy/hyperspy/pull/1831
pass
meta_sig = {}
meta_sig["signal_type"] = ""
return {"General": meta_gen, "Signal": meta_sig}
def _get_mapping(
self, map_selected_element=True, parse_individual_EDS_detector_metadata=True
):
mapping = {
"Acquisition.AcquisitionStartDatetime.DateTime": (
"General.time_zone",
lambda x: self._get_local_time_zone(),
),
"Optics.AccelerationVoltage": (
"Acquisition_instrument.TEM.beam_energy",
lambda x: float(x) / 1e3,
),
"Optics.CameraLength": (
"Acquisition_instrument.TEM.camera_length",
lambda x: float(x) * 1e3,
),
"CustomProperties.StemMagnification.value": (
"Acquisition_instrument.TEM.magnification",
float,
),
"Instrument.InstrumentClass": (
"Acquisition_instrument.TEM.microscope",
None,
),
"Stage.AlphaTilt": (
"Acquisition_instrument.TEM.Stage.tilt_alpha",
lambda x: round(np.degrees(float(x)), 3),
),
"Stage.BetaTilt": (
"Acquisition_instrument.TEM.Stage.tilt_beta",
lambda x: round(np.degrees(float(x)), 3),
),
"Stage.Position.x": (
"Acquisition_instrument.TEM.Stage.x",
lambda x: round(float(x), 6),
),
"Stage.Position.y": (
"Acquisition_instrument.TEM.Stage.y",
lambda x: round(float(x), 6),
),
"Stage.Position.z": (
"Acquisition_instrument.TEM.Stage.z",
lambda x: round(float(x), 6),
),
"ImportedDataParameter.Number_of_frames": (
"Acquisition_instrument.TEM.Detector.EDS.number_of_frames",
None,
),
"DetectorMetadata.ElevationAngle": (
"Acquisition_instrument.TEM.Detector.EDS.elevation_angle",
lambda x: round(float(x), 3),
),
"DetectorMetadata.Gain": (
"Signal.Noise_properties.Variance_linear_model.gain_factor",
float,
),
"DetectorMetadata.Offset": (
"Signal.Noise_properties.Variance_linear_model.gain_offset",
float,
),
}
# Parse individual metadata for each EDS detector
if parse_individual_EDS_detector_metadata:
mapping.update(
{
"DetectorMetadata.AzimuthAngle": (
"Acquisition_instrument.TEM.Detector.EDS.azimuth_angle",
lambda x: "{:.3f}".format(np.degrees(float(x))),
),
"DetectorMetadata.LiveTime": (
"Acquisition_instrument.TEM.Detector.EDS.live_time",
lambda x: "{:.6f}".format(float(x)),
),
"DetectorMetadata.RealTime": (
"Acquisition_instrument.TEM.Detector.EDS.real_time",
lambda x: "{:.6f}".format(float(x)),
),
"DetectorMetadata.DetectorName": ("General.title", None),
}
)
# Add selected element
if map_selected_element:
if int(self.version) >= 11:
key = "SharedProperties.EDSSpectrumQuantificationSettings"
else:
key = "Operations.ImageQuantificationOperation"
mapping[key] = ("Sample.elements", self._convert_element_list)
return mapping
def _convert_element_list(self, d):
atomic_number_list = d[d.keys()[0]]["elementSelection"]
return [
atomic_number2name[int(atomic_number)]
for atomic_number in atomic_number_list
]
def _convert_datetime(self, unix_time):
# Since we don't know the actual time zone of where the data have been
# acquired, we convert the datetime to the local time for convenience
dt = datetime.fromtimestamp(float(unix_time), tz=tz.tzutc())
return dt.astimezone(tz.tzlocal()).isoformat().split("+")[0]
def _get_local_time_zone(self):
return tz.tzlocal().tzname(datetime.today())
# Below some information we have got from FEI about the format of the stream:
#
# The SI data is stored as a spectrum stream, ‘65535’ means next pixel
# (these markers are also called `Gate pulse`), other numbers mean a spectrum
# count in that bin for that pixel.
# For the size of the spectrum image and dispersion you have to look in
# AcquisitionSettings.
# The spectrum image cube itself stored in a compressed format, that is
# not easy to decode.
class FeiSpectrumStream(object):
"""Read spectrum image stored in FEI's stream format
Once initialized, the instance of this class supports numpy style
indexing and slicing of the data stored in the stream format.
"""
def __init__(self, stream_group, reader):
self.reader = reader
self.stream_group = stream_group
# Parse acquisition settings to get bin_count and dtype
acquisition_settings_group = stream_group["AcquisitionSettings"]
acquisition_settings = _parse_json(acquisition_settings_group[0])
self.bin_count = int(acquisition_settings["bincount"])
if self.bin_count % self.reader.rebin_energy != 0:
raise ValueError(
"The `rebin_energy` needs to be a divisor of the",
" total number of channels.",
)
if self.reader.SI_data_dtype is None:
self.reader.SI_data_dtype = acquisition_settings["StreamEncoding"]
# Parse the rest of the metadata for storage
self.original_metadata = _parse_sub_data_group_metadata(stream_group)
# If last_frame is None, compute it
stream_data = self.stream_group["Data"][:].T[0]
if self.reader.last_frame is None:
# The information could not be retrieved from metadata
# we compute, which involves iterating once over the whole stream.
# This is required to support the `last_frame` feature without
# duplicating the functions as currently numba does not support
# parametetrization.
spatial_shape = self.reader.spatial_shape
last_frame = int(
np.ceil(
(stream_data == 65535).sum() / (spatial_shape[0] * spatial_shape[1])
)
)
self.reader.last_frame = last_frame
self.reader.number_of_frames = last_frame
self.original_metadata["ImportedDataParameter"] = {
"First_frame": self.reader.first_frame,
"Last_frame": self.reader.last_frame,
"Number_of_frames": self.reader.number_of_frames,
"Rebin_energy": self.reader.rebin_energy,
"Number_of_channels": self.bin_count,
}
# Convert stream to spectrum image
if self.reader.lazy:
self.spectrum_image = self.stream_to_sparse_array(stream_data=stream_data)
else:
self.spectrum_image = self.stream_to_array(stream_data=stream_data)
@property
def shape(self):
return self.spectrum_image.shape
def get_pixelsize_offset_unit(self):
om_br = self.original_metadata["BinaryResult"]
return om_br["PixelSize"], om_br["Offset"], om_br["PixelUnitX"]
def stream_to_sparse_array(self, stream_data):
import rsciio.utils.fei_stream_readers as stream_readers
"""Convert stream in sparse array
Parameters
----------
stream_data: array
"""
# Here we load the stream data into memory, which is fine is the
# arrays are small. We could load them lazily when lazy.
sparse_array = stream_readers.stream_to_sparse_COO_array(
stream_data=stream_data,
spatial_shape=self.reader.spatial_shape,
first_frame=self.reader.first_frame,
last_frame=self.reader.last_frame,
channels=self.bin_count,
sum_frames=self.reader.sum_frames,
rebin_energy=self.reader.rebin_energy,
)
return sparse_array
def stream_to_array(self, stream_data, spectrum_image=None):
"""Convert stream to array.
Parameters
----------
stream_data : numpy.ndarray
spectrum_image : numpy.ndarray or None
If array, the data from the stream are added to the array.
Otherwise it creates a new array and returns it.
"""
import rsciio.utils.fei_stream_readers as stream_readers
spectrum_image = stream_readers.stream_to_array(
stream=stream_data,
spatial_shape=self.reader.spatial_shape,
channels=self.bin_count,
first_frame=self.reader.first_frame,
last_frame=self.reader.last_frame,
rebin_energy=self.reader.rebin_energy,
sum_frames=self.reader.sum_frames,
spectrum_image=spectrum_image,
dtype=self.reader.SI_data_dtype,
)
return spectrum_image
|