1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
|
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.
import importlib.util
import logging
from copy import deepcopy
from enum import EnumMeta, IntEnum
from pathlib import Path
import numpy as np
from numpy.polynomial.polynomial import polyfit
from rsciio._docstrings import FILENAME_DOC, LAZY_DOC, RETURNS_DOC
_logger = logging.getLogger(__name__)
def _str2numeric(input, type):
"""Handle None-values when converting strings to float."""
try:
if type == "float":
return float(input)
elif type == "int":
return int(input)
else:
return None
except (ValueError, TypeError):
return None
def _str2bool(input):
if input == "-1":
return True
elif input == "0":
return False
else:
return None
def _remove_none_from_dict(dict_in):
"""Recursive removal of None-values from a dictionary."""
for key, value in list(dict_in.items()):
if isinstance(value, dict):
_remove_none_from_dict(value)
elif value is None:
del dict_in[key]
## < specifies little endian
TypeNames = {
"int8": "<i1", # byte int
"int16": "<i2", # short int
"int32": "<i4", # int
"int64": "<i8", # long int
"uint8": "<u1", # unsigned byte int
"uint16": "<u2", # unsigned short int
"uint32": "<u4", # unsigned int
"uint64": "<u8", # unsigned long int
"float": "<f4", # float (32)
"double": "<f8", # double (64)
}
class DefaultEnum(IntEnum):
Unknown = 0
class DefaultEnumMeta(EnumMeta):
def __call__(cls, value, *args, **kwargs):
if value not in cls._value2member_map_:
return DefaultEnum(0)
else:
return super().__call__(value, *args, **kwargs)
## general itex formats may have different conventions
## here the convention from the HPD-TA manual is used
class FileType(IntEnum, metaclass=DefaultEnumMeta):
bit8 = 0
compressed = 1 # not used by HPD-TA
bit16 = 2
bit32 = 3
class AcqMode(IntEnum, metaclass=DefaultEnumMeta):
live = 1
acquire = 2
photon_counting = 3
analog_integration = 4
class Scaling_Type(IntEnum, metaclass=DefaultEnumMeta):
scaling_linear = 1
scaling_table = 2
class IMGReader:
def __init__(self, file, filesize, filename, use_uniform_signal_axes):
self._file_obj = file
self._filesize = filesize
self._original_filename = filename
self._use_uniform_signal_axes = use_uniform_signal_axes
self.original_metadata = {}
self._h_lines = None
self._reverse_signal = False
self.data, comment = self.parse_file()
processed_comment = self._process_comment(comment)
self.original_metadata.update({"Comment": processed_comment})
self.axes = self._get_axes()
self._reshape_data()
self.metadata = self.map_metadata()
def __read_numeric(self, type, size=1, ret_array=False, convert=True):
if type not in TypeNames.keys():
raise ValueError(
f"Trying to read number with unknown dataformat.\n"
f"Input: {type}\n"
f"Supported formats: {list(TypeNames.keys())}"
)
data = np.fromfile(self._file_obj, dtype=TypeNames[type], count=size)
# convert unsigned ints to ints
# because int + uint = float -> problems with indexing
# this leads to problems with uin64, because there is no int128 in numpy
if type in ["uint8", "uint16", "uint32", "uint64"] and convert:
data = data.astype(np.dtype("<i8"))
if size == 1 and not ret_array:
return data[0]
else:
return data
def __read_utf8(self, size):
return self._file_obj.read(size).decode("utf8").replace("\x00", "")
def parse_file(self):
self._file_obj.seek(0)
header = {}
header["character_im"] = self.__read_utf8(2)
com_len = int(self.__read_numeric("int16"))
header["comment_length"] = com_len
## IMPORTANT to convert int16 to int
## as int16 leads to problems when defining sizes of numpy arrays
## -> data is read incorrectly
w_px = int(self.__read_numeric("int16"))
header["image_width_px"] = w_px
self._h_lines = int(self.__read_numeric("int16"))
header["image_height_lines"] = self._h_lines
header["offset_x"] = int(self.__read_numeric("int16"))
header["offset_y"] = int(self.__read_numeric("int16"))
file_type = FileType(int(self.__read_numeric("int16"))).name
header["file_type"] = file_type
header["num_images_in_channel"] = int(self.__read_numeric("int32"))
header["num_additional_channels"] = int(self.__read_numeric("int16"))
header["channel_number"] = int(self.__read_numeric("int16"))
header["timestamp"] = self.__read_numeric("double")
header["marker"] = self.__read_utf8(4)
## according to the manual, additional_info is one byte shorter
## however, there is also an unexplained 1 byte gap between marker and additional info
## so this extra byte is absorbed in additional_info
## in the testfiles both marker and additional_info contain only zeros
header["additional_info"] = self.__read_utf8(30)
comment = self.__read_utf8(com_len)
if file_type == "bit8":
dtype = "uint8"
elif file_type == "bit16":
dtype = "uint16"
elif file_type == "bit32":
dtype = "uint32"
else:
raise RuntimeError(f"reading type: {file_type} not implemented")
data = self.__read_numeric(dtype, size=w_px * self._h_lines)
self.original_metadata.update(header)
return data, comment
@staticmethod
def _get_scaling_entry(scaling_dict, attr_name):
x_val = scaling_dict.get("ScalingX" + attr_name)
y_val = scaling_dict.get("ScalingY" + attr_name)
if y_val == "us":
y_val = "µs"
return x_val, y_val
def _extract_calibration_data(self, cal):
if cal[0] == "#":
pos, size = map(int, cal[1:].split(","))
self._file_obj.seek(pos)
return self.__read_numeric("float", size=size)
else:
raise RuntimeError(
f"Cannot read axis data (invalid start for address {cal})"
)
def _set_axis(self, name, scale_type, unit, cal_addr):
axis = {"units": unit, "name": name, "navigate": False}
if scale_type == 1:
## in this mode (focus mode) the y-axis does not correspond to time
## photoelectrons are not deflected here -> natural spread
axis["units"] = "px"
axis["scale"] = 1
axis["offset"] = 0
axis["size"] = self._h_lines
axis["name"] = "Vertical CCD Position"
elif scale_type == 2:
data = self._extract_calibration_data(cal_addr)
# in testfile wavelength is exactly uniform
# time is close
if name == "Wavelength":
if data[0] > data[1]:
self._reverse_signal = True
data = np.ascontiguousarray(data[::-1])
else:
self._reverse_signal = False
if self._use_uniform_signal_axes:
offset, scale = polyfit(np.arange(data.size), data, deg=1)
axis["offset"] = offset
axis["scale"] = scale
axis["size"] = data.size
scale_compare = 100 * np.max(np.abs(np.diff(data) - scale) / scale)
if scale_compare > 1:
_logger.warning(
f"The relative variation of the signal-axis-scale ({scale_compare:.2f}%) exceeds 1%.\n"
" "
"Using a non-uniform-axis is recommended."
)
else:
axis["axis"] = data
else:
raise ValueError(
f"Cannot extract {name}-axis information (invalid scale-type)."
)
return axis
def _get_axes(self):
scaling_md = self.original_metadata.get("Comment", {}).get("Scaling", {})
x_cal_address, y_cal_address = self._get_scaling_entry(
scaling_md, "ScalingFile"
)
x_unit, y_unit = self._get_scaling_entry(scaling_md, "Unit")
x_type, y_type = map(int, self._get_scaling_entry(scaling_md, "Type"))
x_axis = self._set_axis("Wavelength", x_type, x_unit, x_cal_address)
y_axis = self._set_axis("Time", y_type, y_unit, y_cal_address)
y_axis["index_in_array"] = 0
x_axis["index_in_array"] = 1
axes_list = sorted([x_axis, y_axis], key=lambda item: item["index_in_array"])
return axes_list
def _reshape_data(self):
axes_sizes = []
for ax in self.axes:
try:
axes_sizes.append(ax["axis"].size)
except KeyError:
axes_sizes.append(ax["size"])
self.data = np.reshape(self.data, axes_sizes)
if self._reverse_signal:
self.data = np.ascontiguousarray(self.data[:, ::-1])
@staticmethod
def _split_sections_from_comment(input):
initial_split = input[1:].split("[") # ignore opening bracket at start
result = {}
for entry in initial_split:
sep_idx = entry.index("]")
header = entry[:sep_idx]
body = entry[sep_idx + 2 :].rstrip()
result[header] = body
return result
@staticmethod
def _get_range_for_val(v, sep, count, num_entries, str_len):
if v[sep + 1] == '"':
end_val = v.index('"', sep + 2)
start_val = sep + 2
total_end = end_val + 2
else:
if count == num_entries:
end_val = str_len
else:
end_val = v.index(",", sep)
start_val = sep + 1
total_end = end_val + 1
return start_val, end_val, total_end
def _extract_entries_from_section(self, entries_str):
result = {}
str_len = len(entries_str)
cur_pos = 0
counter = 0
num_entries = entries_str.count("=")
if num_entries == 0:
return entries_str
while cur_pos < str_len:
counter += 1
sep_idx = entries_str.index("=", cur_pos)
key = entries_str[cur_pos:sep_idx]
start_val, end_val, cur_pos = self._get_range_for_val(
entries_str, sep_idx, counter, num_entries, str_len
)
val = entries_str[start_val:end_val]
result[key] = val
return result
def _process_comment(self, comment):
section_split = self._split_sections_from_comment(comment)
result = {}
for k, v in section_split.items():
result[k] = self._extract_entries_from_section(v)
return result
def _map_general_md(self):
general = {}
general["title"] = self._original_filename.split(".")[0]
general["original_filename"] = self._original_filename
try:
date = self.original_metadata["Comment"]["Application"]["Date"]
time = self.original_metadata["Comment"]["Application"]["Time"]
except KeyError: # pragma: no cover
pass # pragma: no cover
else:
delimiters = ["/", "."]
for d in delimiters:
date_split = date.split(d)
if len(date_split) == 3:
general["date"] = (
date_split[2] + "-" + date_split[1] + "-" + date_split[0]
)
break
else:
_logger.warning("Unknown date format, cannot transfrom to ISO.")
general["date"] = date
general["time"] = time.split(".")[0]
return general
def _map_signal_md(self):
signal = {}
if importlib.util.find_spec("lumispy") is None:
_logger.warning(
"Cannot find package lumispy, using BaseSignal as signal_type."
)
signal["signal_type"] = ""
else:
signal["signal_type"] = "LumiTransientSpectrum" # pragma: no cover
try:
quantity = self.original_metadata["Comment"]["Acquisition"]["ZAxisLabel"]
quantity_unit = self.original_metadata["Comment"]["Acquisition"][
"ZAxisUnit"
]
except KeyError: # pragma: no cover
pass # pragma: no cover
else:
if quantity_unit == "Count":
quantity_unit = "Counts"
signal["quantity"] = f"{quantity} ({quantity_unit})"
return signal
def _map_detector_md(self):
detector = {}
acq_dict = self.original_metadata.get("Comment", {}).get("Acquisition", {})
streak_dict = self.original_metadata.get("Comment", {}).get("Streak camera", {})
detector["frames"] = _str2numeric(acq_dict.get("NrExposure"), "int")
try:
exp_time_str = acq_dict["ExposureTime"]
except KeyError:
pass
else:
exp_time_split = exp_time_str.split(" ")
if len(exp_time_split) == 2:
exp_time, exp_time_units = exp_time_split
exp_time = _str2numeric(exp_time, "float")
if exp_time_units == "s":
pass
elif exp_time_units == "ms":
exp_time /= 1000
else:
_logger.warning(
f"integration_time is given in {exp_time_units} instead of seconds."
)
detector["integration_time"] = exp_time * detector["frames"]
else:
_logger.warning("integration_time could not be extracted")
try:
binning_str = acq_dict["pntBinning"]
except KeyError:
pass
else:
if len(binning_str.split(",")) == 2:
detector["binning"] = tuple(map(int, binning_str.split(",")))
detector["processing"] = {
"shading_correction": _str2bool(acq_dict.get("ShadingCorr")),
"background_correction": _str2bool(acq_dict.get("BacksubCorr")),
"curvature_correction": _str2bool(acq_dict.get("CurveCorr")),
"defect_correction": _str2bool(acq_dict.get("DefectCorrection")),
}
detector["detector_type"] = "StreakCamera"
detector["model"] = streak_dict.get("DeviceName")
detector["mcp_gain"] = _str2numeric(streak_dict.get("MCP Gain"), "float")
try:
time_range_str = streak_dict["Time Range"]
except KeyError:
pass
else:
time_range_split = time_range_str.split(" ")
if len(time_range_split) == 2:
time_range, time_range_units = time_range_split
time_range = _str2numeric(time_range, "float")
if time_range_units == "us":
time_range_units = "µs"
detector["time_range"] = time_range
detector["time_range_units"] = time_range_units
else:
# TODO: add warning? only occurs for shading file
time_range = _str2numeric(time_range_str, "float")
detector["time_range"] = time_range
detector["acquisition_mode"] = AcqMode(int(acq_dict.get("AcqMode"))).name
return detector
def _map_spectrometer_md(self):
spectrometer = {}
spectro_dict = self.original_metadata.get("Comment", {}).get("Spectrograph", {})
try:
groove_density_str = spectro_dict["Grating"]
except KeyError:
groove_density = None
else:
groove_density_split = groove_density_str.split(" ")
if len(groove_density_split) == 2:
groove_density, groove_density_units = groove_density_str.split(" ")
groove_density = _str2numeric(groove_density, "int")
if groove_density_units != "g/mm":
_logger.warning(
f"groove_density is given in {groove_density_units}"
)
else:
groove_density = groove_density_str
## Remove grating when no unit (->1 or 2, but not lines per mm)
## Same for blaze
## warning for these cases?
if spectro_dict.get("Ruling") != "0" and spectro_dict.get("Blaze") != 0:
spectrometer["Grating"] = {
"blazing_wavelength": _str2numeric(spectro_dict.get("Blaze"), "float"),
"groove_density": _str2numeric(groove_density, "float"),
}
spectrometer["model"] = spectro_dict.get("DeviceName")
spectrometer["entrance_slit_width"] = _str2numeric(
spectro_dict.get("Side Ent. Slitw."), "float"
) ## TODO: units?, side entry iris?
spectrometer["central_wavelength"] = _str2numeric(
spectro_dict.get("Wavelength"), "float"
)
return spectrometer
def map_metadata(self):
"""Maps original_metadata to metadata."""
general = self._map_general_md()
signal = self._map_signal_md()
detector = self._map_detector_md()
spectrometer = self._map_spectrometer_md()
acquisition_instrument = {
"Detector": detector,
"Spectrometer": spectrometer,
}
metadata = {
"Acquisition_instrument": acquisition_instrument,
"General": general,
"Signal": signal,
}
_remove_none_from_dict(metadata)
return metadata
def file_reader(filename, lazy=False, use_uniform_signal_axes=False, **kwds):
"""
Read Hamamatsu's ``.img`` file, e.g. for streak camera images. In case
LumiSpy is installed, the signal type is automatically set to
``LumiTransientSpectrum``.
Parameters
----------
%s
%s
use_uniform_signal_axes : bool, default=False
Can be specified to choose between non-uniform or uniform signal axis.
If ``True``, the ``scale`` attribute is calculated from the average delta
along the signal axis and a warning is raised in case the delta varies
by more than 1 percent.
**kwds : dict, optional
Extra keyword argument will be ignored.
%s
"""
filesize = Path(filename).stat().st_size
original_filename = Path(filename).name
result = {}
with open(str(filename), "rb") as f:
img = IMGReader(
f,
filesize=filesize,
filename=original_filename,
use_uniform_signal_axes=use_uniform_signal_axes,
)
result["data"] = img.data
result["axes"] = img.axes
result["metadata"] = deepcopy(img.metadata)
result["original_metadata"] = deepcopy(img.original_metadata)
return [
result,
]
file_reader.__doc__ %= (FILENAME_DOC, LAZY_DOC, RETURNS_DOC)
|