File: _api.py

package info (click to toggle)
python-rosettasciio 0.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,644 kB
  • sloc: python: 36,638; xml: 2,582; makefile: 20; ansic: 4
file content (183 lines) | stat: -rw-r--r-- 6,090 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import csv
import logging
import os

import numpy as np

from rsciio._docstrings import FILENAME_DOC, LAZY_UNSUPPORTED_DOC, RETURNS_DOC

_logger = logging.getLogger(__name__)


# At some point, if there is another readerw, whith also use csv file, it will
# be necessary to mention the other reader in this message (and to add an
# argument in the load function to specify the correct reader)
invalid_file_error = (
    "The csv reader can't import the file, please"
    " make sure, that this is a valid Impulse log file."
)
invalid_filenaming_error = {
    "The filename does not match Impulse naming, please"
    " make sure that the filenames for the logfile and metadata file are unchanged."
}


def file_reader(filename, lazy=False):
    """
    Read a DENSsolutions Impulse logfile.

    Parameters
    ----------
    %s
    %s

    %s
    """
    if lazy is not False:
        raise NotImplementedError("Lazy loading is not supported.")

    csv_file = ImpulseCSV(filename)

    return _impulseCSV_log_reader(csv_file)


file_reader.__doc__ %= (FILENAME_DOC, LAZY_UNSUPPORTED_DOC, RETURNS_DOC)


def _impulseCSV_log_reader(csv_file):
    csvs = []
    for key in csv_file.logged_quantity_name_list:
        csvs.append(csv_file.get_dictionary(key))
    return csvs


class ImpulseCSV:
    def __init__(self, filename):
        self.filename = filename
        self._parse_header()
        self._read_data()

    def _parse_header(self):
        with open(self.filename, "r") as f:
            s = f.readline()
            self.column_names = s.strip().split(",")
            if not self._is_impulse_csv_file():
                raise IOError(invalid_file_error)
            self._read_metadatafile()
        self.logged_quantity_name_list = self.column_names[2:]

    def _is_impulse_csv_file(self):
        return "TimeStamp" in self.column_names and len(self.column_names) >= 3

    def get_dictionary(self, quantity):
        return {
            "data": self._data_dictionary[quantity],
            "axes": self._get_axes(),
            "metadata": self._get_metadata(quantity),
            "original_metadata": {"Impulse_header": self.original_metadata},
        }

    def _get_metadata(self, quantity):
        return {
            "General": {
                "original_filename": os.path.split(self.filename)[1],
                "title": "%s" % quantity,
                "date": self.original_metadata["Experiment_date"],
                "time": self.original_metadata["Experiment_time"],
            },
            "Signal": {
                "quantity": self._parse_quantity_units(quantity),
            },
        }

    def _parse_quantity_units(self, quantity):
        quantity_split = quantity.strip().split(" ")
        if (
            len(quantity_split) > 1
            and quantity_split[-1][0] == "("
            and quantity_split[-1][-1] == ")"
        ):
            return quantity_split[-1].replace("(", "").replace(")", "")
        else:
            return ""

    def _read_data(self):
        names = [
            name.replace(" ", "_")
            .replace("°C", "C")
            .replace("#", "No")
            .replace("(", "")
            .replace(")", "")
            .replace("/", "_")
            .replace("%", "Perc")
            for name in self.column_names
        ]
        data = np.genfromtxt(
            self.filename,
            delimiter=",",
            dtype=None,
            names=names,
            skip_header=1,
            encoding="latin1",
        )
        self._data_dictionary = dict()
        for i, (name, name_dtype) in enumerate(zip(self.column_names, names)):
            if name == "Experiment time":
                self.time_axis = data[name_dtype]
            elif name == "MixValve":
                mixvalvedatachanged = data[name_dtype]
                for index, item in enumerate(data[name_dtype]):
                    mixvalvedatachanged[index] = (
                        int(int(item.split(";")[0]) + 2) * 100
                        + (int(item.split(";")[1]) + 2) * 10
                        + (int(item.split(";")[2]) + 2)
                    )
                mixvalvedatachangedint = np.array(mixvalvedatachanged, dtype=np.int32)
                self._data_dictionary[name] = mixvalvedatachangedint
            else:
                self._data_dictionary[name] = data[name_dtype]

    def _read_metadatafile(self):
        # Locate the experiment metadata file
        self.original_metadata = {}
        notes = []
        notes_section = False

        if "_Synchronized data" in str(self.filename) or "raw" in str(
            self.filename
        ):  # Check if Impulse filename formatting is intact
            metadata_file = (
                "_".join(str(self.filename).split("_")[:-1]) + "_Metadata.log"
            ).replace("\\", "/")
            if os.path.isfile(metadata_file):
                with open(metadata_file, newline="") as csvfile:
                    metadata_file_reader = csv.reader(csvfile, delimiter=",")
                    for row in metadata_file_reader:
                        if notes_section:
                            notes.append(row[0])
                        elif row[0] == "Live notes":
                            notes_section = True
                            notes = [row[1].strip()]
                        else:
                            self.original_metadata[row[0].replace(" ", "_")] = row[
                                1
                            ].strip()
                    self.original_metadata["Notes"] = notes

            else:
                _logger.warning("No metadata file found in folder")
        else:
            raise IOError(invalid_filenaming_error)

    def _get_axes(self):
        return [
            {
                "size": self.time_axis.shape[0],
                "index_in_array": 0,
                "name": "Time",
                "scale": np.diff(self.time_axis[1:-1]).mean(),
                "offset": 0,
                "units": "Seconds",
                "navigate": False,
            }
        ]