1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
|
# -*- coding: utf-8 -*-
# Copyright 2022 CEOS GmbH
# Copyright 2022 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/>.
import logging
import os
from datetime import datetime as dt
import numpy as np
from rsciio._docstrings import (
FILENAME_DOC,
LAZY_UNSUPPORTED_DOC,
RETURNS_DOC,
SIGNAL_DOC,
)
from rsciio.utils.tools import DTBox
_logger = logging.getLogger(__name__)
# -----------------------
# File format description
# -----------------------
# The file consists of a compressed numpy file containing a n-dimensional numpy
# array (containing all data) with a dictionary containing all metadata.
def file_reader(filename, lazy=False):
"""
Read a PantaRhei ``.prz`` file.
Parameters
----------
%s
%s
%s
"""
if lazy is not False:
raise NotImplementedError("Lazy loading is not supported.")
prz_file = np.load(filename, allow_pickle=True)
data = prz_file["data"]
meta_data = prz_file["meta_data"][0]
return import_pr(data, meta_data, filename)
file_reader.__doc__ %= (FILENAME_DOC, LAZY_UNSUPPORTED_DOC, RETURNS_DOC)
def file_writer(filename, signal):
"""
Write signal to PantaRhei ``.prz`` format.
Parameters
----------
%s
%s
"""
data, meta_data = export_pr(signal=signal)
with open(filename, mode="wb") as f:
# use open file to avoid numpy adding the npz extension
np.savez_compressed(
file=f,
data=data,
meta_data=[meta_data],
file_format_version=2,
data_model=[{}],
)
file_writer.__doc__ %= (FILENAME_DOC.replace("read", "write to"), SIGNAL_DOC)
def import_pr(data, meta_data, filename=None):
"""Converts metadata from PantaRhei to hyperspy format, and corrects
the order of data axes if needed.
Parameters
----------
data: ndarray
numerical data array, as loaded from file
meta_data: dict
dictionary containing the meta data in PantaRhei format
filename: str or None
name of the file being loaded
Returns
-------
the list of dictionaries containing the data and metadata in hyperspy format
"""
data_dimensions = len(data.shape)
data_type = meta_data.get("type")
content_type = meta_data.get("content.types")
calibrations = []
for axis in range(data_dimensions):
try:
calib = meta_data["device.calib"][axis]
except (IndexError, KeyError):
calib = None
calibrations.append(calib)
if content_type is None:
if data_type in ("Stack", "3D"):
content_type = [None, None, "Index"]
elif data_type == "1D" and data_dimensions == 3:
content_type = [None, "PlotIndex", "Index"]
elif data_type == "1D":
content_type = [None, "PlotIndex"]
elif data_dimensions >= 3:
content_type = [
None,
None,
] + ["Index" for _ in range(data_dimensions - 2)]
else:
content_type = [None for _ in range(data_dimensions)]
elif data_type == "1D":
if len(content_type) == 1 and data_dimensions == 2:
content_type = [None, "PlotIndex"]
elif len(content_type) == 2 and data_dimensions == 3:
content_type = [None, "PlotIndex", "Index"]
elif len(content_type) != data_dimensions:
raise Exception(
"Content type is not known for all dimensions "
f"{content_type}, {data.shape}."
)
navigation_dimensions = ["ScanY", "ScanX", "Index", "PlotIndex"]
signal_dimensions = ["CameraY", "CameraX", "Pixel", "Energy", "*"]
content_type_np_order = content_type[::-1]
calibrations_np_order = calibrations[::-1]
if len(content_type_np_order) != data_dimensions: # pragma: no cover
raise RuntimeError(
"Unsupported file, please report the error in the "
"the HyperSpy issue tracker."
)
trivial_indices = [
i
for i, _ in enumerate(content_type_np_order)
if data.shape[i] == 1 and "Index" in content_type_np_order[i]
]
content_type_np_order = [
c for i, c in enumerate(content_type_np_order) if i not in trivial_indices
]
calibrations_np_order = [
c for i, c in enumerate(calibrations_np_order) if i not in trivial_indices
]
data = np.squeeze(data, axis=tuple(trivial_indices))
def _navigation_first(i):
order = navigation_dimensions + signal_dimensions
if content_type_np_order[i] in order:
return order.index(content_type_np_order[i])
else:
return len(order)
new_order = sorted(range(len(content_type_np_order)), key=_navigation_first)
default_labels = reversed(["X", "Y", "Z"][: content_type_np_order.count(None)])
data_labels = [
(
content_type_np_order[i]
if content_type_np_order[i] is not None
else next(default_labels)
)
for i in new_order
]
calibration_ordered = [calibrations_np_order[i] for i in new_order]
data = np.moveaxis(data, new_order, list(range(len(content_type_np_order))))
# TODO: Will have to be updated once CEOS adds selectable dispersion orientation
if meta_data.get("filter.mode") == "EELS":
flip_axis = tuple(i for i, label in enumerate(data_labels) if label == "Energy")
if flip_axis:
data = np.flip(data, flip_axis)
else:
flip_axis = ()
for key in [
"content.types",
"user.calib",
"inherited.calib",
"device.calib",
"size",
"ref_size",
]:
if key in meta_data:
assert isinstance(meta_data[key], (list, tuple))
if isinstance(meta_data[key], list):
old_meta_data = meta_data[key].copy()
else:
old_meta_data = meta_data[key]
if len(old_meta_data) == data.ndim + 1:
item_in_numpy_order = old_meta_data[-2::-1]
else:
item_in_numpy_order = old_meta_data[::-1]
meta_data[key] = []
for i in range(data.ndim):
try:
meta_data[key].append(item_in_numpy_order[new_order[i]])
except Exception as e: # pragma: no cover
raise Exception(
f"Could not load meta data: {key} " f"in hyperspy file: {e}."
)
axes = []
for i, (label, calib) in enumerate(zip(data_labels, calibration_ordered)):
ax = {
"navigate": label in navigation_dimensions,
"name": label,
"size": data.shape[i],
}
if calib:
if "unit" in calib:
ax["units"] = calib["unit"]
if "value" in calib:
ax["offset"] = calib["offset"] * calib["value"]
else:
ax["offset"] = calib["offset"]
if "pixel_factor" in calib:
ax["scale"] = calib["value"] * calib["pixel_factor"]
else:
ax["scale"] = calib["value"]
if i in flip_axis:
# TODO: Will have to be updated once CEOS adds selectable dispersion orientation
new_offset = -(ax["offset"] + (data.shape[i] - 1) * ax["scale"])
ax["offset"] = new_offset
axes.append(ax)
mapped = _metadata_converter_in(meta_data, axes, filename)
dictionary = {
"data": data,
"axes": axes,
"metadata": mapped.to_dict(),
"original_metadata": meta_data,
}
file_data_list = [
dictionary,
]
return file_data_list
def export_pr(signal):
"""Extracts from the signal the data array and the metadata in PantaRhei format
Parameters
----------
signal: BaseSignal
signal to be exported
Returns
-------
data: ndarray
numerical data of the signal
meta_data: dict
metadata dictionary in PantaRhei format
"""
data = signal["data"]
metadata = signal["metadata"]
original_metadata = signal["original_metadata"]
axes_info = signal["axes"]
meta_data = _metadata_converter_out(metadata, original_metadata)
if "ref_size" not in meta_data:
meta_data["ref_size"] = data.shape[::-1]
ref_size = meta_data["ref_size"][::-1] # switch to numpy order
pixel_factors = [ref_size[i] / data.shape[i] for i in range(data.ndim)]
axes_meta_data = get_metadata_from_axes_info(axes_info, pixel_factors=pixel_factors)
meta_data.update(axes_meta_data)
return data, meta_data
def _metadata_converter_in(meta_data, axes, filename):
mapped = DTBox(box_dots=True)
signal_dimensions = 0
for ax in axes:
if ax["navigate"] is False:
signal_dimensions += 1
microscope_base_voltage = meta_data.get("electron_gun.voltage")
convergence_angle = meta_data.get("condenser.convergence_semi_angle")
collection_angle = meta_data.get("filter.collection_semi_angle")
if microscope_base_voltage:
total_voltage_shift = meta_data.get(
"filter.ht_offset", meta_data.get("electron_gun.voltage_offset", 0)
)
beam_energy_keV = (microscope_base_voltage + total_voltage_shift) / 1000
mapped.set_item("Acquisition_instrument.TEM.beam_energy", beam_energy_keV)
if convergence_angle:
convergence_angle_mrad = convergence_angle * 1e3
mapped.set_item(
"Acquisition_instrument.TEM.convergence_angle", convergence_angle_mrad
)
if collection_angle:
collection_angle_mrad = collection_angle * 1e3
mapped.set_item(
"Acquisition_instrument.TEM.Detector.EELS.collection_angle",
collection_angle_mrad,
)
if meta_data.get("filter.mode") == "EELS" and signal_dimensions == 1:
mapped.set_item("Signal.signal_type", "EELS")
name = meta_data.get("repo_id")
if name is not None:
mapped.set_item("General.title", name.split(".")[0])
if filename is not None:
mapped.set_item("General.original_filename", os.path.split(filename)[1])
timestamp = None
if "acquisition.time" in meta_data:
timestamp = meta_data["acquisition.time"]
elif "camera.time" in meta_data:
timestamp = meta_data["camera.time"]
if timestamp is not None:
timestamp = dt.fromisoformat(timestamp)
mapped.set_item("General.date", timestamp.date().isoformat())
mapped.set_item("General.time", timestamp.time().isoformat())
if "filter.aperture" in meta_data:
aperture = meta_data["filter.aperture"]
if "mm" in aperture:
aperture = aperture.split("mm")[0]
aperture = aperture.rstrip()
mapped.set_item(
"Acquisition_instrument.TEM.Detector.EELS.aperture", float(aperture)
)
else:
mapped.set_item(
"Acquisition_instrument.TEM.Detector.EELS.aperture", aperture
)
source_type = meta_data.get("source.type")
if source_type == "scan_generator":
acquisition_mode = "STEM"
key = "scan_driver"
elif source_type == "camera":
acquisition_mode = "TEM"
key = "projector"
else:
acquisition_mode = None
key = None
magnification = meta_data.get(f"{key}.magnification")
camera_length = meta_data.get("projector.camera_length")
if acquisition_mode is not None:
mapped.set_item("Acquisition_instrument.TEM.acquisition_mode", acquisition_mode)
if magnification is not None:
mapped.set_item("Acquisition_instrument.TEM.magnification", magnification)
if camera_length is not None:
mapped.set_item("Acquisition_instrument.TEM.camera_length", camera_length)
return mapped
def _metadata_converter_out(metadata, original_metadata=None):
# Don't use `box_dots=True` to be able to use key containing period
# When a entry doesn't exist a empty DTBox is returned
metadata = DTBox(metadata, box_dots=False, default_box=True)
original_metadata = DTBox(original_metadata, box_dots=False, default_box=True)
original_fname = metadata.General.original_filename or ""
original_extension = os.path.splitext(original_fname)[1]
if original_metadata.get("ref_size"):
PR_metadata_present = True
else:
PR_metadata_present = False
if original_extension == ".prz" and PR_metadata_present:
meta_data = original_metadata.to_dict()
meta_data["ref_size"] = meta_data["ref_size"][::-1]
for key in ["content.types", "user.calib", "inherited.calib", "device.calib"]:
if key in meta_data:
assert isinstance(meta_data[key], (list, tuple))
if isinstance(meta_data[key], list):
old_meta_data = meta_data[key].copy()
else:
old_meta_data = meta_data[key]
meta_data[key] = old_meta_data[::-1]
else:
meta_data = {}
if metadata.Signal.signal_type == "EELS":
meta_data["filter.mode"] = "EELS"
name = metadata.General.title
if name:
meta_data["repo_id"] = name + ".0"
date = metadata.General.date
time = metadata.General.time
if date and time:
timestamp = date + "T" + time
meta_data["acquisition.time"] = timestamp
md_TEM = metadata.Acquisition_instrument.TEM
if md_TEM:
beam_energy = md_TEM.beam_energy
convergence_angle = md_TEM.convergence_angle
collection_angle = md_TEM.Detector.EELS.collection_angle
aperture = md_TEM.Detector.EELS.aperture
acquisition_mode = md_TEM.acquisition_mode
magnification = md_TEM.magnification
camera_length = md_TEM.camera_length
if aperture:
if isinstance(aperture, (float, int)):
aperture = str(aperture) + " mm"
meta_data["filter.aperture"] = aperture
if beam_energy:
beam_energy_ev = beam_energy * 1e3
meta_data["electron_gun.voltage"] = beam_energy_ev
if convergence_angle:
convergence_angle_rad = convergence_angle / 1e3
meta_data["condenser.convergence_semi_angle"] = convergence_angle_rad
if collection_angle:
collection_angle_rad = collection_angle / 1e3
meta_data["filter.collection_semi_angle"] = collection_angle_rad
if camera_length:
meta_data["projector.camera_length"] = camera_length
if acquisition_mode == "STEM":
key = "scan_driver"
meta_data["source.type"] = "scan_generator"
else:
key = "projector"
meta_data["source.type"] = "camera"
if magnification:
meta_data[f"{key}.magnification"] = magnification
return meta_data
def get_metadata_from_axes_info(axes_info, pixel_factors=None):
"""
Return a dict with calibration metadata obtained from the passed axes info.
Parameters
----------
axes_info: list of dict
A list of dicts containing axis information. The list is sorted by the axis index,
Each item in the list refers to one axis.
Returns
-------
:param pixel_factors: A list of pixel factors.
These are similar to binning factors, and are important when re-exporting dataset that where imported from
PRZ files. They are relevant for Panta Rhei's internal handling of calibrations.
"""
axis_name_to_content_type = {
"Energy loss": "Energy",
"Energy": "Energy",
"ScanX": "ScanY",
"ScanY": "ScanX",
}
nr_axes = len(axes_info)
imported_calibs = [None] * nr_axes
content_types = [None] * nr_axes
navigate_axes = [None] * nr_axes
for i in range(nr_axes):
# Add content types if axes names are known.
axis_info = axes_info[i]
axis_label = None
if "name" in axis_info: # name is not always present
axis_label = axis_info["name"]
if axis_label in axis_name_to_content_type:
content_types[i] = axis_name_to_content_type[axis_label]
imported_calib_dict = {"scale": None, "offset": None, "units": None}
for key in ("scale", "offset", "units"):
if key in axis_info:
imported_calib_dict[key] = axis_info[key]
# If any part of a calibration is given
# -> Create a default calibration and
# set all available information.
if any([v for k, v in imported_calib_dict.items()]):
calib = {}
if imported_calib_dict["scale"] is not None:
calib["value"] = imported_calib_dict["scale"]
# Apply pixel factor as calculated from meta data.
if pixel_factors:
calib["value"] /= pixel_factors[i]
if imported_calib_dict["offset"] is not None:
calib["offset"] = imported_calib_dict["offset"]
# PR expects offset in image pixels
# not in calibrated values.
calib["offset"] = calib["offset"] / calib["value"]
if imported_calib_dict["units"] is not None:
imported_unit = imported_calib_dict["units"]
# unit may be in SI unit *with* prefix
allowed_base_units = ["m", "A", "V", "rad", "s", "eV"]
calib["value"], calib["unit"] = _guess_from_unit(
calib["value"], imported_unit, allowed_base_units=allowed_base_units
)
if calib["unit"] in allowed_base_units:
calib["use_prefix"] = True
imported_calibs[i] = calib # ['as_dict()
# Get information whether axis is navigate axis
# (which means 'display axis' in our terms).
if "navigate" in axis_info:
navigate_axes[i] = axis_info["navigate"]
display_axes = [i for i, is_display in enumerate(navigate_axes) if is_display]
axes_meta_data = {}
# Calibrations and content types must be in reversed order,
# because hyperspy uses numpy order,
# while PR expects image order.
if any(imported_calibs):
axes_meta_data["inherited.calib"] = imported_calibs[::-1]
if any(content_types):
axes_meta_data["content.types"] = content_types[::-1]
else:
if len([nav for nav in navigate_axes if not nav]) == 1:
axes_meta_data["type"] = "1D"
if display_axes:
# Only add display axes tag, if not all axes are displayed
# (which means that data is 3D or 4D data).
# If only one display axis is defined, ignore it,
# because using plots as navigation tool for cubes
# is currently not supported.
if nr_axes > len(display_axes) and len(display_axes) > 1:
axes_meta_data["display_axes"] = tuple(display_axes[::-1])
return axes_meta_data
def _guess_from_unit(scale, unit, allowed_base_units=None):
"""Guess the base unit according to the passed unit (with possible prefix).
Parameters
----------
scale: float
the calibration value as given by the imported format
unit: str
the calibration unit as given by the imported format.
May start with a unit prefix (like 'm', 'u', etc.)
allowed_base_units: list
An optional list of allowed base units. If None is passed, all units
that start with 'm', 'n', 'p' or 'u' are assumed to be units with prefixes.
Returns
-------
scale: float
the calibration value scaled with the prefix-factor.
unit: str
the base unit without the prefix
"""
prefixes = {"m": 1e-3, "u": 1e-6, "ยต": 1e-6, "n": 1e-9, "p": 1e-12}
if isinstance(unit, str) and len(unit) > 1 and unit[0] in prefixes:
if allowed_base_units is None or (unit[1:] in allowed_base_units):
scale *= prefixes[unit[0]]
unit = unit[1:]
return scale, unit
|