1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
|
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.
#
#
# Install this as hyperspy/io_plugins/phenom.py
#
# If you get the error "cannot decompress LZW", run
# pip install imagecodecs
#
# Edit hyperspy/io_plugins/__init__.py and add phenom to both the
# list of imports and io_plugins
#
# You should now be able to load Phenom EID .elid files.
#
# This reader supports the ELID file format used in Phenom ProSuite
# Element Identification version 3.8.0 and later. You can convert
# older ELID files by loading the file into a recent Element
# Identification release and then save the ELID file into the newer
# file format.
import bz2
import copy
import io
import math
import os
import struct
import xml.etree.ElementTree as ET
from datetime import datetime
import numpy as np
import tifffile
from dateutil import tz
from rsciio._docstrings import FILENAME_DOC, LAZY_UNSUPPORTED_DOC, RETURNS_DOC
def element_symbol(z):
elements = [
"",
"H",
"He",
"Li",
"Be",
"B",
"C",
"N",
"O",
"F",
"Ne",
"Na",
"Mg",
"Al",
"Si",
"P",
"S",
"Cl",
"Ar",
"K",
"Ca",
"Sc",
"Ti",
"V",
"Cr",
"Mn",
"Fe",
"Co",
"Ni",
"Cu",
"Zn",
"Ga",
"Ge",
"As",
"Se",
"Br",
"Kr",
"Rb",
"Sr",
"Y",
"Zr",
"Nb",
"Mo",
"Tc",
"Ru",
"Rh",
"Pd",
"Ag",
"Cd",
"In",
"Sn",
"Sb",
"Te",
"I",
"Xe",
"Cs",
"Ba",
"La",
"Ce",
"Pr",
"Nd",
"Pm",
"Sm",
"Eu",
"Gd",
"Tb",
"Dy",
"Ho",
"Er",
"Tm",
"Yb",
"Lu",
"Hf",
"Ta",
"W",
"Re",
"Os",
"Ir",
"Pt",
"Au",
"Hg",
"Tl",
"Pb",
"Bi",
"Po",
"At",
"Rn",
"Fr",
"Ra",
"Ac",
"Th",
"Pa",
"U",
"Np",
"Pu",
"Am",
"Cm",
"Bk",
"Cf",
"Es",
"Fm",
"Md",
"No",
"Lr",
"Rf",
"Db",
"Sg",
"Bh",
"Hs",
"Mt",
"Ds",
"Rg",
"Cn",
"Nh",
"Fl",
"Mc",
"Lv",
"Ts",
"Og",
]
if z < 1 or z >= len(elements):
raise Exception("Invalid atomic number")
return elements[z]
def family_symbol(i):
families = ["", "K", "L", "M", "N", "O", "P"]
if i < 1 or i >= len(families):
raise Exception("Invalid atomic number")
return families[i]
def IsGZip(pathname):
with open(pathname, "rb") as f:
(magic,) = struct.unpack("2s", f.read(2))
return magic == b"\x1f\x8b"
def IsBZip2(pathname):
with open(pathname, "rb") as f:
(magic, _, bytes) = struct.unpack("2s2s6s", f.read(10))
return magic == b"BZ" and bytes == b"\x31\x41\x59\x26\x53\x59"
class ElidReader:
def __init__(self, pathname, block_size=1024 * 1024):
if IsGZip(pathname):
raise Exception("pre EID 3.8 files are not supported")
if not IsBZip2(pathname):
raise Exception("not an ELID file")
self._pathname = pathname
with open(pathname, "rb") as self._file:
self._decompressor = bz2.BZ2Decompressor()
self._block_size = block_size
(id, version) = struct.unpack("<4si", self._read(8))
if id != b"EID2":
raise Exception("Not an ELID file.")
if version > 4:
raise Exception(f"unsupported ELID format {version}.")
self._version = version
self.dictionaries = self._read_Project()
def _read(self, size=1):
data = self._decompressor.decompress(b"", size)
while self._decompressor.needs_input:
data += self._decompressor.decompress(
self._file.read(self._block_size), size - len(data)
)
return data
def _read_bool(self):
return struct.unpack("?", self._read(1))[0]
def _read_uint8(self):
return struct.unpack("B", self._read(1))[0]
def _read_int32(self):
return struct.unpack("<i", self._read(4))[0]
def _read_uint32(self):
return struct.unpack("<I", self._read(4))[0]
def _read_string(self):
n = self._read_uint32()
return self._read(n).decode("utf-8")
def _get_unit_factor(self, unit):
if len(unit) < 2:
return 1
elif unit[0] == "M":
return 1e6
elif unit[0] == "k":
return 1e3
elif unit[0] == "m":
return 1e-3
elif unit[0] == "u" or unit[0] == "µ":
return 1e-6
elif unit[0] == "n":
return 1e-9
elif unit[0] == "p":
return 1e-12
else:
raise Exception("Unknown unit: " + unit)
def _get_value_with_unit(self, item):
if isinstance(item, dict):
return float(item["value"]) * self._get_unit_factor(item["unit"])
else:
return float(item)
def _read_tiff(self):
def xml_element_to_dict(element):
dict = {}
if len(element) == 0:
if len(element.items()) > 0:
dict[element.tag] = {"value": element.text}
for attrib, value in element.items():
dict[element.tag].update({attrib: value})
else:
dict[element.tag] = element.text
else:
dict[element.tag] = {}
for child in element:
dict[element.tag].update(xml_element_to_dict(child))
return dict
def make_metadata_dict(xml):
dict = xml_element_to_dict(ET.fromstring(xml))
return dict["FeiImage"] if dict else {}
n = self._read_uint32()
if n == 0:
return (None, None)
bytes = io.BytesIO(self._read(n))
with tifffile.TiffFile(bytes) as tiff:
data = tiff.asarray()
if len(data.shape) > 2:
# HyperSpy uses struct arrays to store RGB data
from rsciio.utils import rgb_tools
data = rgb_tools.regular_array2rgbx(data)
tags = tiff.pages[0].tags
if "FEI_TITAN" in tags:
metadata = make_metadata_dict(tags["FEI_TITAN"].value)
metadata["acquisition"]["scan"]["fieldSize"] = max(
self._get_value_with_unit(metadata["pixelHeight"]) * data.shape[0],
self._get_value_with_unit(metadata["pixelWidth"]) * data.shape[1],
)
else:
metadata = {}
return (metadata, data)
def _read_int32s(self):
n = self._read_uint32()
return [self._read_int32() for _ in range(n)]
def _read_float64(self):
return struct.unpack("<d", self._read(8))[0]
def _read_float64s(self):
n = self._read_uint32()
return [self._read_float64() for _ in range(n)]
def _read_varuint32(self):
value = 0
shift = 0
while True:
b = self._read_uint8()
value = value | ((b & 127) << shift)
if (b & 128) == 0:
break
shift += 7
return value
def _read_spectrum(self):
offset = self._read_float64()
dispersion = self._read_float64()
n = self._read_uint32()
return (offset, dispersion, [self._read_varuint32() for _ in range(n)])
def _read_uint8s(self):
n = self._read_uint32()
return [self._read_uint8() for _ in range(n)]
def _read_oxide(self):
element = self._read_uint8()
num_element = self._read_uint8()
num_oxygen = self._read_uint8()
oxide = element_symbol(element)
if num_element > 1:
oxide += str(num_element)
oxide += "O"
if num_oxygen > 1:
oxide += str(num_oxygen)
return oxide
def _read_oxides(self):
n = self._read_uint32()
return [self._read_oxide() for _ in range(n)]
def _read_element_family(self):
element = element_symbol(self._read_uint8())
family = family_symbol(self._read_uint8())
return (element, family)
def _read_element_families(self):
n = self._read_uint32()
return [self._read_element_family() for _ in range(n)]
def _read_drift_correction(self):
dc = self._read_uint8()
if dc == 1:
return "on"
elif dc == 2:
return "off"
else:
return "unknown"
def _read_detector_type(self):
dt = self._read_uint8()
if dt == 0:
return "Empty"
elif dt == 1:
return "FastSDD_C2"
elif dt == 2:
return "FastSDD_C5"
elif dt == 3:
return "FastSDD_WLS"
else:
return "Unknown"
def _read_spectrum_correction(self):
sc = self._read_uint8()
if sc == 1:
return "linearized"
elif sc == 2:
return "raw"
else:
return "unknown"
def _read_element_collection(self):
return [element_symbol(z) for z in self._read_uint8s()]
def _read_eds_metadata(self, om):
metadata = {}
metadata["high_tension"] = self._read_float64()
detector_elevation = self._read_float64()
if self._version == 0:
detector_elevation = math.radians(detector_elevation)
metadata["detector_elevation"] = detector_elevation
metadata["detector_azimuth"] = self._read_float64()
metadata["live_time"] = self._read_float64()
metadata["real_time"] = self._read_float64()
metadata["slow_peaking_time"] = self._read_float64()
metadata["fast_peaking_time"] = self._read_float64()
metadata["detector_resolution"] = self._read_float64()
metadata["instrument_id"] = self._read_string()
if self._version == 0 and "workingDistance" in om:
metadata["working_distance"] = self._get_value_with_unit(
om["workingDistance"]
)
metadata["slow_peaking_time"] = (
11.2e-6 if float(om["acquisition"]["scan"]["spotSize"]) < 4.5 else 2e-6
)
metadata["fast_peaking_time"] = 100e-9
metadata["detector_surface_area"] = 25e-6
elif self._version > 0:
metadata["optical_working_distance"] = self._read_float64()
metadata["working_distance"] = self._read_float64()
metadata["detector_surface_area"] = self._read_float64()
metadata["detector_distance"] = self._read_float64()
metadata["sample_tilt_angle"] = self._read_float64()
if self._version >= 3:
metadata["ccorrection"] = self._read_float64()
metadata["detector_type"] = self._read_detector_type()
metadata["spectrum_correction"] = self._read_spectrum_correction()
else:
metadata["ccorrection"] = 0
metadata["detector_type"] = "FastSDD_C2"
metadata["spectrum_correction"] = "unknown"
return metadata
def _read_CommonAnalysis(self, am):
(metadata, cutout) = self._read_tiff()
sum_spectrum = self._read_spectrum()
eds_metadata = self._read_eds_metadata(am)
eds_metadata["offset"] = sum_spectrum[0]
eds_metadata["dispersion"] = sum_spectrum[1]
data = sum_spectrum[2]
eds_metadata["included_elements"] = self._read_element_collection()
eds_metadata["excluded_elements"] = self._read_element_collection()
eds_metadata["background_fit_bins"] = self._read_int32s()
eds_metadata["selected_oxides"] = self._read_oxides()
eds_metadata["auto_id"] = self._read_bool()
eds_metadata["order_nr"] = self._read_int32()
eds_metadata["family_overrides"] = self._read_element_families()
if self._version >= 2:
eds_metadata["drift_correction"] = self._read_drift_correction()
else:
eds_metadata["drift_correction"] = "unknown"
if self._version >= 4:
eds_metadata["ignored_elements"] = self._read_element_collection()
else:
eds_metadata["ignored_elements"] = []
if metadata:
metadata["acquisition"]["scan"]["detectors"]["EDS"] = eds_metadata
else:
metadata = {}
metadata.update({"acquisition": {"scan": {"detectors": {}}}})
metadata["acquisition"]["scan"]["detectors"]["EDS"] = eds_metadata
return (metadata, data)
def _make_metadata_dict(self, signal_type=None, title="", datetime=None):
metadata_dict = {
"General": {
"original_filename": os.path.split(self._pathname)[1],
"title": title,
}
}
if signal_type:
metadata_dict["Signal"] = {"signal_type": signal_type}
if datetime:
metadata_dict["General"].update(
{
"date": datetime[0],
"time": datetime[1],
"time_zone": self._get_local_time_zone(),
}
)
return metadata_dict
def _get_local_time_zone(self):
return tz.tzlocal().tzname(datetime.today())
def _make_mapping(self):
return {
"acquisition.scan.detectors.EDS.detector_azimuth": (
"Acquisition_instrument.SEM.Detector.EDS.azimuth_angle",
lambda x: math.degrees(float(x)),
),
"acquisition.scan.detectors.EDS.detector_elevation": (
"Acquisition_instrument.SEM.Detector.EDS.elevation_angle",
lambda x: math.degrees(float(x)),
),
"acquisition.scan.detectors.EDS.detector_resolution": (
"Acquisition_instrument.SEM.Detector.EDS.energy_resolution_MnKa",
float,
),
"acquisition.scan.detectors.EDS.live_time": (
"Acquisition_instrument.SEM.Detector.EDS.live_time",
float,
),
"acquisition.scan.detectors.EDS.real_time": (
"Acquisition_instrument.SEM.Detector.EDS.real_time",
float,
),
"acquisition.scan.detectors.EDS.high_tension": (
"Acquisition_instrument.SEM.beam_energy",
lambda x: float(x) / 1e3,
),
"acquisition.scan.highVoltage.value": (
"Acquisition_instrument.SEM.beam_energy",
lambda x: -float(x),
),
"instrument.uniqueID": (
"Acquisition_instrument.SEM.microscope",
lambda x: x,
),
"samplePosition.x": (
"Acquisition_instrument.SEM.Stage.x",
lambda x: float(x) / 1e-3,
),
"samplePosition.y": (
"Acquisition_instrument.SEM.Stage.y",
lambda x: float(x) / 1e-3,
),
"acquisition.scan.detectors.EDS.sample_tilt_angle": (
"Acquisition_instrument.SEM.Stage.tilt_alpha",
lambda x: math.degrees(float(x)),
),
"acquisition.scan.detectors.EDS.working_distance": (
"Acquisition_instrument.SEM.working_distance",
lambda x: float(x) / 1e-3,
),
}
def _make_spot_spectrum_dict(self, om, offset, dispersion, data, title):
axes = [
{
"name": "Energy",
"offset": offset / 1e3,
"scale": dispersion / 1e3,
"size": len(data),
"units": "keV",
"navigate": False,
}
]
dict = {
"data": data,
"axes": axes,
"metadata": self._make_metadata_dict(
"EDS_SEM", title, self._get_datetime(om)
),
"original_metadata": om,
"mapping": self._make_mapping(),
}
return dict
def _get_datetime(self, metadata):
if "time" in metadata:
return metadata["time"].split("T")
else:
return None
def _make_line_spectrum_dict(self, om, offset, dispersion, data, title):
axes = [
{
"index_in_array": 0,
"name": "i",
"offset": 0,
"scale": 1,
"size": data.shape[0],
"units": "points",
"navigate": True,
},
{
"index_in_array": 1,
"name": "X-ray energy",
"offset": offset / 1e3,
"scale": dispersion / 1e3,
"size": data.shape[1],
"units": "keV",
"navigate": False,
},
]
dict = {
"data": data,
"axes": axes,
"metadata": self._make_metadata_dict(
"EDS_SEM", title, self._get_datetime(om)
),
"original_metadata": om,
"mapping": self._make_mapping(),
}
return dict
def _get_unit(self, value):
if value > 1:
return (1, "")
elif value > 1e-3:
return (1e-3, "m")
elif value > 1e-6:
return (1e-6, "µ")
elif value > 1e-9:
return (1e-9, "n")
else:
return (1, "")
def _make_map_spectrum_dict(self, om, offset, dispersion, data, title):
size = om["acquisition"]["scan"]["fieldSize"] * float(
om["acquisition"]["scan"]["scanScale"]
)
(scale, prefix) = self._get_unit(size)
unit = prefix + "m"
size = size / scale
axes = [
{
"index_in_array": 0,
"name": "y",
"offset": 0,
"scale": size / data.shape[0],
"size": data.shape[0],
"units": unit,
"navigate": True,
},
{
"index_in_array": 1,
"name": "x",
"offset": 0,
"scale": size / data.shape[1],
"size": data.shape[1],
"units": unit,
"navigate": True,
},
{
"index_in_array": 2,
"name": "X-ray energy",
"offset": offset / 1e3,
"scale": dispersion / 1e3,
"size": data.shape[2],
"units": "keV",
"navigate": False,
},
]
dict = {
"data": data,
"axes": axes,
"metadata": self._make_metadata_dict(
"EDS_SEM", title, self._get_datetime(om)
),
"original_metadata": om,
"mapping": self._make_mapping(),
}
return dict
def _make_image_dict(self, om, data, title):
if om:
(scale, prefix) = self._get_unit(
0.2 * om["acquisition"]["scan"]["fieldSize"]
)
scale_x = self._get_value_with_unit(om["pixelWidth"]) / scale
scale_y = self._get_value_with_unit(om["pixelHeight"]) / scale
unit = prefix + "m"
else:
scale_x = 1
scale_y = 1
unit = "points"
axes = [
{
"index_in_array": 0,
"name": "y",
"offset": 0,
"scale": scale_y,
"size": data.shape[0],
"units": unit,
"navigate": True,
},
{
"index_in_array": 1,
"name": "x",
"offset": 0,
"scale": scale_x,
"size": data.shape[1],
"units": unit,
"navigate": True,
},
]
dict = {
"data": data,
"axes": axes,
"metadata": self._make_metadata_dict("", title, self._get_datetime(om)),
"original_metadata": om,
"mapping": self._make_mapping(),
}
return dict
def _read_MsaAnalysis(self, label, am):
(om, sum_spectrum) = self._read_CommonAnalysis(am)
original_metadata = copy.deepcopy(am)
original_metadata.update(om)
return self._make_spot_spectrum_dict(
original_metadata,
om["acquisition"]["scan"]["detectors"]["EDS"]["offset"],
om["acquisition"]["scan"]["detectors"]["EDS"]["dispersion"],
np.array(sum_spectrum),
"{}, MSA {}".format(
label, om["acquisition"]["scan"]["detectors"]["EDS"]["order_nr"]
),
)
def _read_SpotAnalysis(self, label, am):
(om, sum_spectrum) = self._read_CommonAnalysis(am)
x = self._read_float64()
y = self._read_float64()
original_metadata = copy.deepcopy(am)
original_metadata["acquisition"]["scan"]["detectors"]["EDS"] = om[
"acquisition"
]["scan"]["detectors"]["EDS"]
original_metadata["acquisition"]["scan"]["detectors"]["EDS"]["position"] = {
"x": x,
"y": y,
}
return self._make_spot_spectrum_dict(
original_metadata,
om["acquisition"]["scan"]["detectors"]["EDS"]["offset"],
om["acquisition"]["scan"]["detectors"]["EDS"]["dispersion"],
np.array(sum_spectrum),
"{}, Spot {}".format(
label, om["acquisition"]["scan"]["detectors"]["EDS"]["order_nr"]
),
)
def _read_LineScanAnalysis(self, label, am):
(om, sum_spectrum) = self._read_CommonAnalysis(am)
x1 = self._read_float64()
y1 = self._read_float64()
x2 = self._read_float64()
y2 = self._read_float64()
size = self._read_uint32()
bins = self._read_uint32()
offset = self._read_float64()
dispersion = self._read_float64()
eds_metadata = self._read_eds_metadata(am)
eds_metadata["live_time"] = om["acquisition"]["scan"]["detectors"]["EDS"][
"live_time"
]
eds_metadata["real_time"] = om["acquisition"]["scan"]["detectors"]["EDS"][
"real_time"
]
eds_metadata["begin"] = {"x": x1, "y": y1}
eds_metadata["end"] = {"x": x2, "y": y2}
eds_metadata["offset"] = offset
eds_metadata["dispersion"] = dispersion
has_variable_real_time = self._read_bool()
has_variable_live_time = self._read_bool()
data = np.empty([size, bins], dtype=np.uint32)
for i in range(size):
for bin in range(bins):
data[i, bin] = self._read_varuint32()
if has_variable_real_time:
eds_metadata["real_time_values"] = [
self._read_float64() for _ in range(size)
]
else:
eds_metadata["real_time_values"] = [self._read_float64()] * size
if has_variable_live_time:
eds_metadata["live_time_values"] = [
self._read_float64() for _ in range(size)
]
else:
eds_metadata["live_time_values"] = [self._read_float64()] * size
eds_metadata["high_accuracy_quantification"] = self._read_bool()
original_metadata = copy.deepcopy(am)
original_metadata["acquisition"]["scan"]["detectors"]["EDS"] = eds_metadata
return self._make_line_spectrum_dict(
original_metadata,
om["acquisition"]["scan"]["detectors"]["EDS"]["offset"],
om["acquisition"]["scan"]["detectors"]["EDS"]["dispersion"],
data,
"{}, Line {}".format(
label, om["acquisition"]["scan"]["detectors"]["EDS"]["order_nr"]
),
)
def _read_MapAnalysis(self, label, am):
(om, sum_spectrum) = self._read_CommonAnalysis(am)
# These metadata are currently not used but we still need to
# read these to advance the position in the file
# use placeholder for readability
_ = self._read_float64() # left
_ = self._read_float64() # top
_ = self._read_float64() # right
_ = self._read_float64() # bottom
_ = self._read_float64s() # color_intensities
width = self._read_uint32()
height = self._read_uint32()
bins = self._read_uint32()
_ = self._read_float64() # offset
_ = self._read_float64() # dispersion
original_metadata = copy.deepcopy(am)
eds_metadata = self._read_eds_metadata(am)
eds_metadata["live_time"] = om["acquisition"]["scan"]["detectors"]["EDS"][
"live_time"
]
eds_metadata["real_time"] = om["acquisition"]["scan"]["detectors"]["EDS"][
"real_time"
]
original_metadata["acquisition"]["scan"]["detectors"]["EDS"] = eds_metadata
has_variable_real_time = self._read_bool()
has_variable_live_time = self._read_bool()
data = np.empty([height, width, bins], dtype=np.uint32)
for y in range(height):
for x in range(width):
for bin in range(bins):
data[y, x, bin] = self._read_varuint32()
if has_variable_real_time:
real_time_values = np.empty([height, width], dtype=float)
for y in range(height):
for x in range(width):
real_time_values[y, x] = self._read_float64()
eds_metadata["real_time_values"] = real_time_values
else:
eds_metadata["real_time_values"] = np.full(
[height, width], self._read_float64()
)
if has_variable_live_time:
live_time_values = np.empty([height, width], dtype=float)
for y in range(height):
for x in range(width):
live_time_values[y, x] = self._read_float64()
eds_metadata["live_time_values"] = live_time_values
else:
eds_metadata["live_time_values"] = np.full(
[height, width], self._read_float64()
)
return self._make_map_spectrum_dict(
original_metadata,
om["acquisition"]["scan"]["detectors"]["EDS"]["offset"],
om["acquisition"]["scan"]["detectors"]["EDS"]["dispersion"],
data,
"{}, Map {}".format(
label, om["acquisition"]["scan"]["detectors"]["EDS"]["order_nr"]
),
)
def _read_DifferenceAnalysis(self, label, am):
(om, sum_spectrum) = self._read_CommonAnalysis(am)
minuend = self._read_uint32()
subtrahend = self._read_uint32()
original_metadata = copy.deepcopy(am)
original_metadata["acquisition"]["scan"]["detectors"]["EDS"] = om[
"acquisition"
]["scan"]["detectors"]["EDS"]
return self._make_spot_spectrum_dict(
original_metadata,
om["acquisition"]["scan"]["detectors"]["EDS"]["offset"],
om["acquisition"]["scan"]["detectors"]["EDS"]["dispersion"],
np.array(sum_spectrum),
"{}, Difference {} - {}".format(label, minuend, subtrahend),
)
def _read_RegionAnalysis(self, label, am):
(om, sum_spectrum) = self._read_CommonAnalysis(am)
left = self._read_float64()
top = self._read_float64()
right = self._read_float64()
bottom = self._read_float64()
original_metadata = copy.deepcopy(am)
original_metadata["acquisition"]["scan"]["detectors"]["EDS"] = om[
"acquisition"
]["scan"]["detectors"]["EDS"]
original_metadata["acquisition"]["scan"]["detectors"]["EDS"]["rectangle"] = {
"left": left,
"top": top,
"right": right,
"bottom": bottom,
}
return self._make_spot_spectrum_dict(
original_metadata,
om["acquisition"]["scan"]["detectors"]["EDS"]["offset"],
om["acquisition"]["scan"]["detectors"]["EDS"]["dispersion"],
np.array(sum_spectrum),
"{}, Region {}".format(
label, om["acquisition"]["scan"]["detectors"]["EDS"]["order_nr"]
),
)
def _read_ConstructiveAnalysisSource(self):
analysis_index = self._read_uint32()
weight_factor = self._read_float64()
return (analysis_index, weight_factor)
def _read_ConstructiveAnalysisSources(self):
n = self._read_uint32()
return [self._read_ConstructiveAnalysisSource() for _ in range(n)]
def _read_ConstructiveAnalysis(self, label, am):
self._read_CommonAnalysis(am)
# These metadata are currently not used but we still need to
# read these to advance the position in the file
# use placeholder for readability
_ = self._read_string() # description
_ = self._read_ConstructiveAnalysisSources() # sources
def _read_ConstructiveAnalyses(self):
return self._read_Analyses("", {})
def _read_Analysis(self, label, am):
type = self._read_uint8()
if type == 1:
return self._read_MsaAnalysis(label, am)
elif type == 2:
return self._read_SpotAnalysis(label, am)
elif type == 3:
return self._read_LineScanAnalysis(label, am)
elif type == 4:
return self._read_MapAnalysis(label, am)
elif type == 5:
return self._read_DifferenceAnalysis(label, am)
elif type == 6:
return self._read_RegionAnalysis(label, am)
elif type == 7:
return self._read_ConstructiveAnalysis(label, am)
else:
raise Exception("Unknown Analysis type")
def _read_Analyses(self, label, metadata):
n = self._read_uint32()
return [self._read_Analysis(label, metadata) for _ in range(n)]
def _read_Image(self):
tiff = self._read_tiff()
label = self._read_string()
dictionaries = []
if tiff:
dictionaries.append(self._make_image_dict(tiff[0], tiff[1], label))
dictionaries.extend(self._read_Analyses(label, tiff[0]))
return dictionaries
def _read_Images(self):
n = self._read_uint32()
dictionaries = []
for _ in range(n):
dictionaries.extend(self._read_Image())
return dictionaries
def _read_Project(self):
dictionaries = self._read_Images()
if self._version >= 1:
self._read_Analyses("", {})
self._read_ConstructiveAnalyses()
return [dict for dict in dictionaries if dict]
def file_reader(filename, lazy=False):
"""
Read a Phenom ``.elid`` file from the software Element Identification (>v3.8.0)
used by the Thermo Fisher Scientific Phenom desktop SEMs.
Parameters
----------
%s
%s
%s
"""
if lazy is not False:
raise NotImplementedError("Lazy loading is not supported.")
reader = ElidReader(filename)
return reader.dictionaries
file_reader.__doc__ %= (FILENAME_DOC, LAZY_UNSUPPORTED_DOC, RETURNS_DOC)
|