1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.
import logging
import os
import warnings
from datetime import datetime as dt
import numpy as np
from rsciio._docstrings import FILENAME_DOC, LAZY_UNSUPPORTED_DOC, RETURNS_DOC
_logger = logging.getLogger(__name__)
# At some point, if there is another readerw, whith also use csv file, it will
# be necessary to mention the other reader in this message (and to add an
# argument in the load function to specify the correct reader)
invalid_file_error = (
"The Protochips csv reader can't import the file, please"
" make sure, this is a valid Protochips log file."
)
def file_reader(filename, lazy=False):
"""
Read a Protochips ``.csv`` logfile containing data for heater, biasing or gas
cell experiments using an in-situ holder.
Parameters
----------
%s
%s
%s
"""
if lazy is not False:
raise NotImplementedError("Lazy loading is not supported.")
csv_file = ProtochipsCSV(filename)
return _protochips_log_reader(csv_file)
file_reader.__doc__ %= (FILENAME_DOC, LAZY_UNSUPPORTED_DOC, RETURNS_DOC)
def _protochips_log_reader(csv_file):
csvs = []
for key in csv_file.logged_quantity_name_list:
try:
csvs.append(csv_file.get_dictionary(key))
except Exception:
raise IOError(invalid_file_error)
return csvs
class ProtochipsCSV(object):
def __init__(
self,
filename,
):
self.filename = filename
self._parse_header()
self._read_data()
def _parse_header(self):
with open(self.filename, "r") as f:
s = f.readline()
self.column_name = s.replace(", ", ",").replace("\n", "").split(",")
if not self._is_protochips_csv_file():
raise IOError(invalid_file_error)
self._read_all_metadata_header(f)
self.logged_quantity_name_list = self.column_name[2:]
def _is_protochips_csv_file(self):
# This check is not great, but it's better than nothing...
if (
"Time" in self.column_name
and "Notes" in self.column_name
and len(self.column_name) >= 3
):
return True
else:
return False
def get_dictionary(self, quantity):
return {
"data": self._data_dictionary[quantity],
"axes": self._get_axes(),
"metadata": self._get_metadata(quantity),
"mapping": self._get_mapping(),
"original_metadata": {"Protochips_header": self._get_original_metadata()},
}
def _get_original_metadata(self):
d = {"Start time": self.start_datetime}
d["Time units"] = self.time_units
for quantity in self.logged_quantity_name_list:
d["%s_units" % quantity] = self._parse_quantity_units(quantity)
if self.user:
d["User"] = self.user
d["Calibration file path"] = self._parse_calibration_filepath()
d["Time axis"] = self._get_metadata_time_axis()
# Add the notes here, because there are not well formatted enough to
# go in metadata
d["Original notes"] = self._parse_notes()
return d
def _get_metadata(self, quantity):
date, time = np.datetime_as_string(self.start_datetime).split("T")
return {
"General": {
"original_filename": os.path.split(self.filename)[1],
"title": "%s (%s)" % (quantity, self._parse_quantity_units(quantity)),
"date": date,
"time": time,
},
"Signal": {"signal_type": "", "quantity": self._parse_quantity(quantity)},
}
def _get_mapping(self):
mapping = {
"Protochips_header.Calibration file path": (
"General.notes",
self._parse_calibration_file_name,
),
"Protochips_header.User": ("General.authors", None),
}
return mapping
def _get_metadata_time_axis(self):
return {"value": self.time_axis, "units": self.time_units}
def _read_data(self):
names = [name.replace(" ", "_") for name in self.column_name]
data = np.genfromtxt(
self.filename,
delimiter=",",
dtype=None,
names=names,
skip_header=self.header_last_line_number,
encoding="latin1",
)
self._data_dictionary = dict()
for i, name, name_dtype in zip(range(len(names)), self.column_name, names):
if name == "Notes":
self.notes = data[name_dtype].astype(str)
elif name == "Time":
self.time_axis = data[name_dtype]
else:
self._data_dictionary[name] = data[name_dtype]
def _parse_notes(self):
arr = np.vstack((self.time_axis, self.notes))
return np.compress(arr[1] != "", arr, axis=1)
def _parse_calibration_filepath(self):
# for the gas cell, the calibration is saved in the notes colunm
if hasattr(self, "calibration_file"):
calibration_file = self.calibration_file
else:
calibration_file = (
"The calibration files names are saved in the"
" 'Original notes' array of the original metadata."
)
return calibration_file
def _parse_calibration_file_name(self, path):
basename = os.path.basename(path)
return "Calibration file name: %s" % basename.split("\\")[-1]
def _get_axes(self):
scale = np.diff(self.time_axis[1:-1]).mean()
max_diff = np.diff(self.time_axis[1:-1]).max()
units = "s"
offset = 0
if self.time_units == "Milliseconds":
scale /= 1000
max_diff /= 1000
# Once we support non-uniform axis, don't forgot to update the
# documentation of the protochips reader
_logger.warning(
"The time axis is not uniform, the time step is "
"thus extrapolated to {0} {1}. The maximal step in time step is {2} {1}".format(
scale, units, max_diff
)
)
else:
warnings.warn("Time units not recognised, assuming second.")
return [
{
"size": self.time_axis.shape[0],
"index_in_array": 0,
"name": "Time",
"scale": scale,
"offset": offset,
"units": units,
"navigate": False,
}
]
def _parse_quantity(self, quantity):
quantity_name = quantity.split(" ")[-1]
return "%s (%s)" % (quantity_name, self._parse_quantity_units(quantity))
def _parse_quantity_units(self, quantity):
quantity = quantity.split(" ")[-1].lower()
return self.__dict__["%s_units" % quantity]
def _read_all_metadata_header(self, f):
param, value = self._parse_metadata_header(f.readline())
i = 2
while "User" not in param: # user should be the last of the header
if "Calibration file" in param:
self.calibration_file = value
elif "Date (yyyy.mm.dd)" in param:
date = value
elif "Time (hh:mm:ss.ms)" in param:
time = value
else:
attr_name = param.replace(" ", "_").lower()
self.__dict__[attr_name] = value
i += 1
try:
param, value = self._parse_metadata_header(f.readline())
except ValueError:
# when the last line of header does not contain 'User',
# possibly some old file.
self.user = None
break
except IndexError:
_logger.warning("The metadata may not be parsed properly.")
break
else:
self.user = value
self.header_last_line_number = i
self.start_datetime = np.datetime64(
dt.strptime(date + time, "%Y.%m.%d%H:%M:%S.%f")
)
def _parse_metadata_header(self, line):
return line.replace(", ", ",").split(",")[1].split(" = ")
|