1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
|
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.
import gc
import warnings
from pathlib import Path
import numpy as np
import pytest
from rsciio.utils.date_time_tools import serial_date_to_ISO_format
from rsciio.utils.tests import assert_deep_almost_equal
from rsciio.utils.tools import sarray2dict
try:
WindowsError
except NameError:
WindowsError = None
pytest.importorskip("skimage", reason="scikit-image not installed")
hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
from rsciio.blockfile._api import get_default_header # noqa: E402
TEST_DATA_DIR = Path(__file__).parent / "data" / "blockfile"
FILE1 = TEST_DATA_DIR / "test1.blo"
FILE2 = TEST_DATA_DIR / "test2.blo"
@pytest.fixture()
def fake_signal():
fake_data = np.arange(300, dtype=np.uint8).reshape(3, 4, 5, 5)
fake_signal = hs.signals.Signal2D(fake_data)
fake_signal.axes_manager[0].scale_as_quantity = "1 mm"
fake_signal.axes_manager[1].scale_as_quantity = "1 mm"
fake_signal.axes_manager[2].scale_as_quantity = "1 mm"
fake_signal.axes_manager[3].scale_as_quantity = "1 mm"
return fake_signal
@pytest.fixture()
def save_path(tmp_path):
filepath = tmp_path / "save_temp.blo"
yield filepath
# Force files release (required in Windows)
gc.collect()
ref_data2 = np.array(
[
[
[
[20, 23, 25, 25, 27],
[29, 23, 23, 0, 29],
[24, 0, 0, 22, 18],
[0, 14, 19, 17, 26],
[19, 21, 22, 27, 20],
],
[
[28, 25, 29, 15, 29],
[12, 15, 12, 25, 24],
[25, 26, 26, 18, 27],
[19, 18, 20, 23, 28],
[28, 18, 22, 25, 0],
],
[
[21, 29, 25, 19, 18],
[30, 15, 20, 22, 26],
[23, 18, 26, 15, 25],
[22, 25, 24, 15, 20],
[22, 15, 15, 21, 23],
],
],
[
[
[28, 25, 26, 24, 26],
[26, 17, 0, 24, 12],
[17, 18, 21, 19, 21],
[21, 24, 19, 17, 0],
[17, 14, 25, 15, 26],
],
[
[25, 18, 20, 15, 24],
[19, 13, 23, 18, 11],
[0, 25, 0, 0, 14],
[26, 22, 22, 11, 14],
[21, 0, 15, 13, 19],
],
[
[24, 18, 20, 22, 21],
[13, 25, 20, 28, 29],
[15, 17, 24, 23, 23],
[22, 21, 21, 22, 18],
[24, 25, 18, 18, 27],
],
],
],
dtype=np.uint8,
)
axes1 = {
"axis-0": {
"_type": "UniformDataAxis",
"name": "y",
"navigate": True,
"offset": 0.0,
"scale": 12.8,
"size": 3,
"units": "nm",
"is_binned": False,
},
"axis-1": {
"_type": "UniformDataAxis",
"name": "x",
"navigate": True,
"offset": 0.0,
"scale": 12.8,
"size": 2,
"units": "nm",
"is_binned": False,
},
"axis-2": {
"_type": "UniformDataAxis",
"name": "dy",
"navigate": False,
"offset": 0.0,
"scale": 0.016061676839061997,
"size": 144,
"units": "cm",
"is_binned": False,
},
"axis-3": {
"_type": "UniformDataAxis",
"name": "dx",
"navigate": False,
"offset": 0.0,
"scale": 0.016061676839061997,
"size": 144,
"units": "cm",
"is_binned": False,
},
}
axes2 = {
"axis-0": {
"_type": "UniformDataAxis",
"name": "y",
"navigate": True,
"offset": 0.0,
"scale": 64.0,
"size": 2,
"units": "nm",
"is_binned": False,
},
"axis-1": {
"_type": "UniformDataAxis",
"name": "x",
"navigate": True,
"offset": 0.0,
"scale": 64.0,
"size": 3,
"units": "nm",
"is_binned": False,
},
"axis-2": {
"_type": "UniformDataAxis",
"name": "dy",
"navigate": False,
"offset": 0.0,
"scale": 0.016061676839061997,
"size": 5,
"units": "cm",
"is_binned": False,
},
"axis-3": {
"_type": "UniformDataAxis",
"name": "dx",
"navigate": False,
"offset": 0.0,
"scale": 0.016061676839061997,
"size": 5,
"units": "cm",
"is_binned": False,
},
}
axes2_converted = {
"axis-0": {
"_type": "UniformDataAxis",
"name": "y",
"navigate": True,
"offset": 0.0,
"scale": 64.0,
"size": 2,
"units": "nm",
"is_binned": False,
},
"axis-1": {
"_type": "UniformDataAxis",
"name": "x",
"navigate": True,
"offset": 0.0,
"scale": 64.0,
"size": 3,
"units": "nm",
"is_binned": False,
},
"axis-2": {
"_type": "UniformDataAxis",
"name": "dy",
"navigate": False,
"offset": 0.0,
"scale": 160.61676839061997,
"size": 5,
"units": "µm",
"is_binned": False,
},
"axis-3": {
"_type": "UniformDataAxis",
"name": "dx",
"navigate": False,
"offset": 0.0,
"scale": 160.61676839061997,
"size": 5,
"units": "µm",
"is_binned": False,
},
}
def test_load1():
s = hs.load(FILE1)
assert s.data.shape == (3, 2, 144, 144)
assert s.axes_manager.as_dictionary() == axes1
@pytest.mark.parametrize(("convert_units"), (True, False))
def test_load2(convert_units):
s = hs.load(FILE2, convert_units=convert_units)
assert s.data.shape == (2, 3, 5, 5)
axes = axes2_converted if convert_units else axes2
np.testing.assert_equal(s.axes_manager.as_dictionary(), axes)
np.testing.assert_allclose(s.data, ref_data2)
@pytest.mark.parametrize(("convert_units"), (True, False))
def test_save_load_cycle(save_path, convert_units):
sig_reload = None
signal = hs.load(FILE2, convert_units=convert_units)
serial = signal.original_metadata["blockfile_header"]["Acquisition_time"]
date, time, timezone = serial_date_to_ISO_format(serial)
assert signal.metadata.General.original_filename == "test2.blo"
assert signal.metadata.General.date == date
assert signal.metadata.General.time == time
assert signal.metadata.General.time_zone == timezone
assert (
signal.metadata.General.notes
== "Precession angle : \r\nPrecession Frequency : \r\nCamera gamma : on"
)
signal.save(save_path, overwrite=True)
sig_reload = hs.load(save_path, convert_units=convert_units)
np.testing.assert_equal(signal.data, sig_reload.data)
assert (
signal.axes_manager.as_dictionary() == sig_reload.axes_manager.as_dictionary()
)
assert (
signal.original_metadata.as_dictionary()
== sig_reload.original_metadata.as_dictionary()
)
# change original_filename to make the metadata of both signals equals
sig_reload.metadata.General.original_filename = (
signal.metadata.General.original_filename
)
# assert file reading tests here, then delete so we can compare
# entire metadata structure at once:
plugin = "rsciio.blockfile"
assert signal.metadata.General.FileIO.Number_0.operation == "load"
assert signal.metadata.General.FileIO.Number_0.io_plugin == plugin
assert signal.metadata.General.FileIO.Number_1.operation == "save"
assert signal.metadata.General.FileIO.Number_1.io_plugin == plugin
assert sig_reload.metadata.General.FileIO.Number_0.operation == "load"
assert sig_reload.metadata.General.FileIO.Number_0.io_plugin == plugin
del signal.metadata.General.FileIO
del sig_reload.metadata.General.FileIO
assert_deep_almost_equal(
signal.metadata.as_dictionary(), sig_reload.metadata.as_dictionary()
)
assert signal.metadata.General.date == sig_reload.metadata.General.date
assert signal.metadata.General.time == sig_reload.metadata.General.time
assert isinstance(signal, hs.signals.Signal2D)
# Delete reference to close memmap file!
del sig_reload
def test_different_x_y_scale_units(save_path):
# perform load and save cycle with changing the scale on y
signal = hs.load(FILE2)
signal.axes_manager[0].scale = 50.0
signal.save(save_path, overwrite=True)
sig_reload = hs.load(save_path)
np.testing.assert_allclose(sig_reload.axes_manager[0].scale, 50.0, rtol=1e-5)
np.testing.assert_allclose(sig_reload.axes_manager[1].scale, 64.0, rtol=1e-5)
np.testing.assert_allclose(sig_reload.axes_manager[2].scale, 0.0160616, rtol=1e-5)
def test_inconvertible_units(save_path, fake_signal):
fake_signal.axes_manager[2].units = "1/A"
fake_signal.axes_manager[3].units = "1/A"
with pytest.warns(UserWarning):
fake_signal.save(save_path, overwrite=True)
def test_overflow(save_path, fake_signal):
fake_signal.change_dtype(np.uint16)
with pytest.warns(UserWarning):
fake_signal.save(save_path, overwrite=True)
sig_reload = hs.load(save_path)
np.testing.assert_allclose(sig_reload.data, fake_signal.data.astype(np.uint8))
def test_dtype_lims(save_path, fake_signal):
fake_signal.data = fake_signal.data * 100
fake_signal.change_dtype(np.uint16)
fake_signal.save(save_path, intensity_scaling="dtype", overwrite=True)
sig_reload = hs.load(save_path)
np.testing.assert_allclose(
sig_reload.data, (fake_signal.data / 65535 * 255).astype(np.uint8)
)
def test_dtype_float_fail(save_path, fake_signal):
fake_signal.change_dtype(np.float32)
with pytest.raises(ValueError):
fake_signal.save(save_path, intensity_scaling="dtype", overwrite=True)
def test_minmax_lims(save_path, fake_signal):
fake_signal.save(save_path, intensity_scaling="minmax", overwrite=True)
sig_reload = hs.load(save_path)
np.testing.assert_allclose(
sig_reload.data,
(fake_signal.data / fake_signal.data.max() * 255).astype(np.uint8),
)
def test_crop_lims(save_path, fake_signal):
fake_signal.save(save_path, intensity_scaling="crop", overwrite=True)
sig_reload = hs.load(save_path)
compare = fake_signal.data
compare[compare > 255] = 255
np.testing.assert_allclose(sig_reload.data, compare)
def test_tuple_limits(save_path, fake_signal):
skimage = pytest.importorskip("skimage", reason="scikit-image not installed")
fake_signal.save(save_path, intensity_scaling=(5, 200), overwrite=True)
sig_reload = hs.load(save_path)
compare = skimage.exposure.rescale_intensity(
fake_signal.data, in_range=(5, 200), out_range=np.uint8
)
np.testing.assert_allclose(sig_reload.data, compare)
def test_lazy_save(save_path, fake_signal):
fake_signal = fake_signal.as_lazy()
fake_signal.save(save_path, intensity_scaling="minmax", overwrite=True)
sig_reload = hs.load(save_path)
compare = (fake_signal.data / fake_signal.data.max() * 255).astype(np.uint8)
np.testing.assert_allclose(sig_reload.data, compare)
@pytest.mark.parametrize("navigator", [None, "navigator", "array"])
def test_vbfs(save_path, fake_signal, navigator):
fake_signal = fake_signal.as_lazy()
if navigator in ["navigator", "array"]:
fake_signal.compute_navigator()
if navigator == "array":
navigator = fake_signal.navigator.data
fake_signal.save(
save_path, intensity_scaling=None, navigator=navigator, overwrite=True
)
sig_reload = hs.load(save_path)
np.testing.assert_allclose(sig_reload.data, fake_signal.data)
def test_invalid_vbf(save_path, fake_signal):
with pytest.raises(ValueError):
fake_signal.save(
save_path,
navigator=hs.signals.Signal2D(np.zeros((10, 10))),
overwrite=True,
)
def test_default_header():
# Simply check that no exceptions are raised
header = get_default_header()
assert header is not None
def test_non_square(save_path):
signal = hs.signals.Signal2D((255 * np.random.rand(10, 3, 5, 6)).astype(np.uint8))
with pytest.warns(UserWarning):
# warning about expect cm units
with pytest.raises(ValueError):
signal.save(save_path, overwrite=True)
def test_load_lazy():
from dask.array import Array
s = hs.load(FILE2, lazy=True)
assert isinstance(s.data, Array)
def test_load_to_memory():
s = hs.load(FILE2, lazy=False)
assert isinstance(s.data, np.ndarray)
assert not isinstance(s.data, np.memmap)
def test_load_readonly():
s = hs.load(FILE2, lazy=True)
k = next(
filter(
# The or statement with both "array-original" and "original-array"
# is due to dask changing the name of this key. After dask-2022.1.1
# the key is "original-array", before it is "array-original"
lambda x: isinstance(x, str)
and (x.startswith("original-array") or x.startswith("array-original")),
s.data.dask.keys(),
)
)
mm = s.data.dask[k]
assert isinstance(mm, np.memmap)
# assert not mm.flags["WRITEABLE"] # With dask 2024.12.0 a copy was introduced so this is no longer true
def test_load_inplace():
with pytest.raises(ValueError):
hs.load(FILE2, lazy=True, mmap_mode="r+")
def test_write_fresh(save_path):
signal = hs.signals.Signal2D((255 * np.random.rand(10, 3, 5, 5)).astype(np.uint8))
signal.axes_manager["sig"].set(units="cm")
signal.axes_manager["nav"].set(units="nm")
signal.save(save_path, overwrite=True)
sig_reload = hs.load(save_path)
np.testing.assert_equal(signal.data, sig_reload.data)
header = sarray2dict(get_default_header())
header.update(
{
"NX": 3,
"NY": 10,
"DP_SZ": 5,
"SX": 1,
"SY": 1,
"SDP": 100,
"Data_offset_2": 10 * 3 + header["Data_offset_1"],
"Note": "",
}
)
header["Data_offset_2"] += header["Data_offset_2"] % 16
assert sig_reload.original_metadata.blockfile_header.as_dictionary() == header
def test_write_data_line(save_path):
signal = hs.signals.Signal2D((255 * np.random.rand(3, 5, 5)).astype(np.uint8))
with pytest.warns(UserWarning):
# expected units warning
signal.save(save_path, overwrite=True)
sig_reload = hs.load(save_path)
np.testing.assert_equal(signal.data, sig_reload.data)
def test_write_data_single(save_path):
signal = hs.signals.Signal2D((255 * np.random.rand(5, 5)).astype(np.uint8))
with pytest.warns(UserWarning):
# expected units warning
signal.save(save_path, overwrite=True)
sig_reload = hs.load(save_path)
np.testing.assert_equal(signal.data, sig_reload.data)
def test_write_data_am_mismatch(save_path):
signal = hs.signals.Signal2D((255 * np.random.rand(10, 3, 5, 5)).astype(np.uint8))
signal.axes_manager.navigation_axes[1].size = 4
with pytest.warns(UserWarning):
# expected units warning
with pytest.raises(ValueError):
signal.save(save_path, overwrite=True)
def test_unrecognized_header_warning(save_path, fake_signal):
fake_signal.save(save_path, overwrite=True)
# change magic number
with open(save_path, "r+b") as f:
f.seek(6)
f.write((0xAFAF).to_bytes(2, byteorder="big", signed=False))
with pytest.warns(UserWarning, match=r"Blockfile has unrecognized .*"):
hs.load(save_path, mmap_mode="r+")
def test_write_cutoff(save_path):
signal = hs.signals.Signal2D((255 * np.random.rand(10, 3, 5, 5)).astype(np.uint8))
signal.axes_manager.navigation_axes[0].size = 20
signal.axes_manager["sig"].set(units="cm")
signal.axes_manager["nav"].set(units="nm")
signal.save(save_path, overwrite=True)
# Test that it raises a warning
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
sig_reload = hs.load(save_path)
# There can be other warnings so >=
assert len(w) >= 1
warning_blockfile = [
"Blockfile header" in str(warning.message) for warning in w
]
assert True in warning_blockfile
assert issubclass(w[warning_blockfile.index(True)].category, UserWarning)
cut_data = signal.data.flatten()
pw = [(0, 17 * 10 * 5 * 5)]
cut_data = np.pad(cut_data, pw, mode="constant")
cut_data = cut_data.reshape((10, 20, 5, 5))
np.testing.assert_equal(cut_data, sig_reload.data)
def test_crop_notes(save_path):
note_len = 0x1000 - 0xF0
note = "test123" * 1000 # > note_len
signal = hs.signals.Signal2D((255 * np.random.rand(2, 3, 2, 2)).astype(np.uint8))
signal.original_metadata.add_node("blockfile_header.Note")
signal.original_metadata.blockfile_header.Note = note
with pytest.warns(UserWarning):
# expected units warning
signal.save(save_path, overwrite=True)
sig_reload = hs.load(save_path)
assert sig_reload.original_metadata.blockfile_header.Note == note[:note_len]
|