File: test_digitalmicrograph.py

package info (click to toggle)
python-rosettasciio 0.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,644 kB
  • sloc: python: 36,638; xml: 2,582; makefile: 20; ansic: 4
file content (724 lines) | stat: -rw-r--r-- 29,636 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.


import json
from pathlib import Path

import numpy as np
import pytest

from rsciio.digitalmicrograph._api import (
    DigitalMicrographReader,
    ImageObject,
    file_reader,
)
from rsciio.tests.generate_dm_testing_files import dm3_data_types, dm4_data_types

hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")


TEST_DATA_PATH = Path(__file__).parent / "data" / "digitalmicrograph"
DM_1D_PATH = TEST_DATA_PATH / "1D"
DM_2D_PATH = TEST_DATA_PATH / "2D"
DM_3D_PATH = TEST_DATA_PATH / "3D"


class TestImageObject:
    def setup_method(self, method):
        self.imageobject = ImageObject({}, "")

    def _load_file(self, fname):
        with open(fname, "rb") as f:
            dm = DigitalMicrographReader(f)
            dm.parse_file()
            self.imdict = dm.get_image_dictionaries()
        return [ImageObject(imdict, fname) for imdict in self.imdict]

    def test_get_microscope_name(self):
        fname = DM_2D_PATH / "test_diffraction_pattern_tags_removed.dm3"
        images = self._load_file(fname)
        image = images[0]
        # Should return None because the tags are missing
        assert image._get_microscope_name(image.imdict.ImageTags) is None

        fname = DM_2D_PATH / "test_diffraction_pattern.dm3"
        images = self._load_file(fname)
        image = images[0]
        assert image._get_microscope_name(image.imdict.ImageTags) == "FEI Tecnai"

    def test_get_date(self):
        assert self.imageobject._get_date("11/13/2016") == "2016-11-13"

    def test_get_time(self):
        assert self.imageobject._get_time("6:56:37 pm") == "18:56:37"

    def test_parse_string(self):
        assert self.imageobject._parse_string("") is None
        assert self.imageobject._parse_string("string") == "string"

    def test_parse_string_convert_float(self):
        assert self.imageobject._parse_string("5", False) == "5"
        assert self.imageobject._parse_string("5", True) == 5
        assert self.imageobject._parse_string("Imaging", True) is None


def test_missing_tag():
    fname = DM_2D_PATH / "test_diffraction_pattern_tags_removed.dm3"
    s = hs.load(fname)
    md = s.metadata
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.beam_energy, 200.0)
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.Camera.exposure, 0.2)
    assert md.General.date == "2014-07-09"
    assert md.General.time == "18:56:37"
    assert md.General.title == "test_diffraction_pattern_tags_removed"


def test_read_TEM_metadata():
    fname = TEST_DATA_PATH / ".." / "tiff" / "test_dm_image_um_unit.dm3"
    s = hs.load(fname)
    md = s.metadata
    assert md.Acquisition_instrument.TEM.acquisition_mode == "TEM"
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.beam_energy, 200.0)
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.Camera.exposure, 0.5)
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.magnification, 51.0)
    assert md.Acquisition_instrument.TEM.microscope == "FEI Tecnai"
    assert md.General.date == "2015-07-20"
    assert md.General.original_filename == "test_dm_image_um_unit.dm3"
    assert md.General.title == "test_dm_image_um_unit"
    assert md.General.time == "18:48:25"
    assert md.Signal.quantity == "Intensity"
    assert md.Signal.signal_type == ""


def test_read_Diffraction_metadata():
    fname = DM_2D_PATH / "test_diffraction_pattern.dm3"
    s = hs.load(fname)
    md = s.metadata
    assert md.Acquisition_instrument.TEM.acquisition_mode == "TEM"
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.beam_energy, 200.0)
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.Camera.exposure, 0.2)
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.camera_length, 320.0)
    assert md.Acquisition_instrument.TEM.microscope == "FEI Tecnai"
    assert md.General.date == "2014-07-09"
    assert md.General.original_filename == "test_diffraction_pattern.dm3"
    assert md.General.title == "test_diffraction_pattern"
    assert md.General.time == "18:56:37"
    assert md.Signal.quantity == "Intensity"
    assert md.Signal.signal_type == ""


def test_read_STEM_metadata():
    fname = DM_2D_PATH / "test_STEM_image.dm3"
    s = hs.load(fname)
    md = s.metadata
    assert md.Acquisition_instrument.TEM.acquisition_mode == "STEM"
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.beam_energy, 200.0)
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.dwell_time, 3.5e-6)
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.camera_length, 135.0)
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.magnification, 225000.0)
    assert md.Acquisition_instrument.TEM.microscope == "FEI Titan"
    assert md.General.date == "2016-08-08"
    assert md.General.original_filename == "test_STEM_image.dm3"
    assert md.General.title == "test_STEM_image"
    assert md.General.time == "16:26:37"
    assert md.Signal.quantity == "Intensity"
    assert md.Signal.signal_type == ""


def test_read_EELS_metadata():
    fname = DM_1D_PATH / "test-EELS_spectrum.dm3"
    s = hs.load(fname)
    md = s.metadata
    assert md.Acquisition_instrument.TEM.acquisition_mode == "STEM"
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.beam_energy, 200.0)
    assert md.Acquisition_instrument.TEM.microscope == "FEI Titan"
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.camera_length, 135.0)
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.magnification, 640000.0)
    np.testing.assert_allclose(
        md.Acquisition_instrument.TEM.Stage.tilt_alpha, 24.95, atol=1e-2
    )
    np.testing.assert_allclose(
        md.Acquisition_instrument.TEM.Stage.x, -0.478619, atol=1e-2
    )
    np.testing.assert_allclose(
        md.Acquisition_instrument.TEM.Stage.y, 0.0554612, atol=1e-2
    )
    np.testing.assert_allclose(
        md.Acquisition_instrument.TEM.Stage.z, 0.036348, atol=1e-2
    )
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.convergence_angle, 21.0)
    np.testing.assert_allclose(
        md.Acquisition_instrument.TEM.Detector.EELS.collection_angle, 0.0
    )
    np.testing.assert_allclose(
        md.Acquisition_instrument.TEM.Detector.EELS.exposure, 0.0035
    )
    np.testing.assert_allclose(
        md.Acquisition_instrument.TEM.Detector.EELS.frame_number, 50
    )
    assert md.Acquisition_instrument.TEM.Detector.EELS.spectrometer == "GIF Quantum ER"
    assert md.Acquisition_instrument.TEM.Detector.EELS.aperture_size == 5.0
    assert md.General.date == "2016-08-08"
    assert md.General.original_filename == "test-EELS_spectrum.dm3"
    assert md.General.title == "EELS Acquire"
    assert md.General.time == "19:35:17"
    assert md.Signal.quantity == "Electrons (Counts)"
    assert md.Signal.signal_type == "EELS"
    np.testing.assert_allclose(
        md.Signal.Noise_properties.Variance_linear_model.gain_factor, 0.1285347
    )
    np.testing.assert_allclose(
        md.Signal.Noise_properties.Variance_linear_model.gain_offset, 0.0
    )
    # tag name is "align min. correlation coefficient"
    assert (
        s.original_metadata.ImageList.TagGroup0.ImageTags.EELS.Acquisition.Align_min_correlation_coefficient
        == 0.5
    )


def test_read_SI_metadata():
    fname = DM_3D_PATH / "EELS_SI.dm4"
    s = hs.load(fname)
    md = s.metadata
    assert md.Acquisition_instrument.TEM.acquisition_mode == "STEM"
    assert md.General.date == "2019-05-14"
    assert md.General.time == "20:50:13"
    np.testing.assert_allclose(
        md.Acquisition_instrument.TEM.Detector.EELS.aperture_size, 5.0
    )
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.convergence_angle, 21.0)
    np.testing.assert_allclose(
        md.Acquisition_instrument.TEM.Detector.EELS.collection_angle, 62.0
    )
    np.testing.assert_allclose(
        md.Acquisition_instrument.TEM.Detector.EELS.frame_number, 1
    )
    np.testing.assert_allclose(
        md.Acquisition_instrument.TEM.Detector.EELS.dwell_time, 1.9950125e-2
    )


def test_read_EDS_metadata():
    pytest.importorskip("exspy", reason="exspy not installed.")
    fname = DM_1D_PATH / "test-EDS_spectrum.dm3"
    s = hs.load(fname)
    md = s.metadata
    assert md.Acquisition_instrument.TEM.acquisition_mode == "STEM"
    np.testing.assert_allclose(
        md.Acquisition_instrument.TEM.Detector.EDS.azimuth_angle, 45.0
    )
    np.testing.assert_allclose(
        md.Acquisition_instrument.TEM.Detector.EDS.elevation_angle, 18.0
    )
    np.testing.assert_allclose(
        md.Acquisition_instrument.TEM.Detector.EDS.energy_resolution_MnKa, 130.0
    )
    np.testing.assert_allclose(
        md.Acquisition_instrument.TEM.Detector.EDS.live_time, 3.806
    )
    np.testing.assert_allclose(
        md.Acquisition_instrument.TEM.Detector.EDS.real_time, 4.233
    )
    np.testing.assert_allclose(
        md.Acquisition_instrument.TEM.Stage.tilt_alpha, 24.95, atol=1e-2
    )
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.beam_energy, 200.0)
    assert md.Acquisition_instrument.TEM.microscope == "FEI Titan"
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.camera_length, 135.0)
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.magnification, 320000.0)
    assert md.General.date == "2016-08-08"
    assert md.General.original_filename == "test-EDS_spectrum.dm3"
    assert md.General.title == "EDS Spectrum"
    assert md.General.time == "21:46:19"
    assert md.Signal.quantity == "X-rays (Counts)"
    assert md.Signal.signal_type == "EDS_TEM"
    np.testing.assert_allclose(
        md.Signal.Noise_properties.Variance_linear_model.gain_factor, 1.0
    )
    np.testing.assert_allclose(
        md.Signal.Noise_properties.Variance_linear_model.gain_offset, 0.0
    )
    assert s.axes_manager[-1].units == "keV"


def test_read_MonoCL_pmt_metadata():
    fname = DM_1D_PATH / "test-MonoCL_spectrum-pmt.dm4"
    s = hs.load(fname)
    md = s.metadata
    assert md.Signal.signal_type == "CL"
    assert md.Signal.format == "Spectrum"
    assert md.Signal.quantity == "Intensity (Counts)"
    assert md.General.date == "2020-10-27"
    assert md.General.original_filename == "test-MonoCL_spectrum-pmt.dm4"
    assert md.General.title == "test-CL_spectrum-pmt"
    assert (
        md.Acquisition_instrument.Spectrometer.acquisition_mode == "Serial dispersive"
    )
    assert md.Acquisition_instrument.Detector.detector_type == "PMT"
    assert md.Acquisition_instrument.Spectrometer.Grating.groove_density == 1200
    assert md.Acquisition_instrument.Detector.integration_time == 1.0
    assert md.Acquisition_instrument.Spectrometer.step_size == 0.5
    np.testing.assert_allclose(
        md.Acquisition_instrument.Spectrometer.start_wavelength, 166.233642
    )


def test_read_MonarcCL_pmt_metadata():
    fname = DM_1D_PATH / "test-MonarcCL_spectrum-pmt.dm4"
    s = hs.load(fname)
    md = s.metadata
    assert md.Signal.signal_type == "CL"
    assert md.Signal.format == "Spectrum"
    assert md.Signal.quantity == "Intensity (Counts)"
    assert md.General.date == "2022-01-17"
    assert md.General.original_filename == "test-MonarcCL_spectrum-pmt.dm4"
    assert md.General.title == "CL_15kX_3-60_pmt2s"
    assert (
        md.Acquisition_instrument.Spectrometer.acquisition_mode == "Serial dispersive"
    )
    assert md.Acquisition_instrument.Detector.detector_type == "PMT"
    assert md.Acquisition_instrument.Spectrometer.Grating.groove_density == 300
    assert md.Acquisition_instrument.Detector.integration_time == 2.0
    assert md.Acquisition_instrument.Spectrometer.step_size == 1.0
    np.testing.assert_allclose(
        md.Acquisition_instrument.Spectrometer.start_wavelength, 160.067505
    )


def test_read_MonoCL_ccd_metadata():
    fname = DM_1D_PATH / "test-MonoCL_spectrum-ccd.dm4"
    s = hs.load(fname)
    md = s.metadata
    assert md.Signal.signal_type == "CL"
    assert md.Signal.format == "Spectrum"
    assert md.Signal.quantity == "Intensity (Counts)"
    assert md.General.date == "2020-09-11"
    assert md.General.time == "17:04:19"
    assert md.General.original_filename == "test-MonoCL_spectrum-ccd.dm4"
    assert md.General.title == "test-CL_spectrum-ccd"
    assert md.Acquisition_instrument.Detector.detector_type == "CCD"
    assert md.Acquisition_instrument.SEM.acquisition_mode == "SEM"
    assert md.Acquisition_instrument.SEM.microscope == "Ultra55"
    assert md.Acquisition_instrument.SEM.beam_energy == 5.0
    assert md.Acquisition_instrument.SEM.magnification == 10104.515625
    assert (
        md.Acquisition_instrument.Spectrometer.acquisition_mode == "Parallel dispersive"
    )
    assert md.Acquisition_instrument.Spectrometer.Grating.groove_density == 300.0
    assert md.Acquisition_instrument.Detector.exposure_per_frame == 30.0
    assert md.Acquisition_instrument.Detector.frames == 1.0
    assert md.Acquisition_instrument.Detector.integration_time == 30.0
    np.testing.assert_allclose(
        md.Acquisition_instrument.Spectrometer.central_wavelength, 949.974182
    )
    np.testing.assert_allclose(
        md.Acquisition_instrument.Detector.saturation_fraction, 0.01861909
    )
    assert md.Acquisition_instrument.Detector.binning == (1, 100)
    assert md.Acquisition_instrument.Detector.processing == "Dark Subtracted"
    assert md.Acquisition_instrument.Detector.sensor_roi == (0, 0, 100, 1336)
    assert md.Acquisition_instrument.Detector.pixel_size == 20.0


def test_read_MonarcCL_ccd_metadata():
    fname = DM_1D_PATH / "test-MonarcCL_spectrum-ccd.dm4"
    s = hs.load(fname)
    md = s.metadata
    assert md.Signal.signal_type == "CL"
    assert md.Signal.format == "Spectrum"
    assert md.Signal.quantity == "Intensity (Counts)"
    assert md.General.date == "2022-01-17"
    assert md.General.time == "16:09:21"
    assert md.General.original_filename == "test-MonarcCL_spectrum-ccd.dm4"
    assert md.General.title == "CL_15kX_3-60_CCD300s_bin2"
    assert md.Acquisition_instrument.Detector.detector_type == "CCD"
    assert md.Acquisition_instrument.SEM.acquisition_mode == "SEM"
    assert md.Acquisition_instrument.SEM.microscope == "Ultra55"
    assert md.Acquisition_instrument.SEM.beam_energy == 3.0
    assert md.Acquisition_instrument.SEM.magnification == 15000.0
    assert (
        md.Acquisition_instrument.Spectrometer.acquisition_mode == "Parallel dispersive"
    )
    np.testing.assert_allclose(
        md.Acquisition_instrument.Spectrometer.central_wavelength, 320.049683
    )
    assert md.Acquisition_instrument.Spectrometer.Grating.groove_density == 300.0
    assert md.Acquisition_instrument.Detector.exposure_per_frame == 300.0
    assert md.Acquisition_instrument.Detector.frames == 1.0
    assert md.Acquisition_instrument.Detector.integration_time == 300.0
    np.testing.assert_allclose(
        md.Acquisition_instrument.Detector.saturation_fraction, 0.08890307
    )
    assert md.Acquisition_instrument.Detector.binning == (2, 100)
    assert md.Acquisition_instrument.Detector.processing == "Dark Subtracted"
    assert md.Acquisition_instrument.Detector.sensor_roi == (0, 0, 100, 1336)
    assert md.Acquisition_instrument.Detector.pixel_size == 20.0


def test_read_MonoCL_SI_metadata():
    fname = DM_2D_PATH / "test-MonoCL_spectrum-SI.dm4"
    s = hs.load(fname)
    md = s.metadata
    assert md.Signal.signal_type == "CL"
    assert md.Signal.format == "Spectrum image"
    assert md.Signal.quantity == "Intensity (Counts)"
    assert md.General.date == "2020-04-11"
    assert md.General.time == "14:41:01"
    assert md.General.original_filename == "test-MonoCL_spectrum-SI.dm4"
    assert md.General.title == "test-CL_spectrum-SI"
    assert md.Acquisition_instrument.Detector.detector_type == "CCD"
    assert md.Acquisition_instrument.SEM.acquisition_mode == "SEM"
    assert md.Acquisition_instrument.SEM.microscope == "Ultra55"
    assert md.Acquisition_instrument.SEM.beam_energy == 5.0
    np.testing.assert_allclose(
        md.Acquisition_instrument.SEM.magnification, 31661.427734
    )
    assert (
        md.Acquisition_instrument.Spectrometer.acquisition_mode == "Parallel dispersive"
    )
    assert md.Acquisition_instrument.Spectrometer.Grating.groove_density == 600.0
    np.testing.assert_allclose(
        md.Acquisition_instrument.Detector.exposure_per_frame, 0.05
    )
    assert md.Acquisition_instrument.Detector.frames == 1
    np.testing.assert_allclose(
        md.Acquisition_instrument.Detector.integration_time, 0.05
    )
    assert md.Acquisition_instrument.Detector.pixel_size == 20.0
    np.testing.assert_allclose(
        md.Acquisition_instrument.Spectrometer.central_wavelength, 869.983825
    )
    np.testing.assert_allclose(
        md.Acquisition_instrument.Detector.saturation_fraction[0], 0.09676377
    )
    assert md.Acquisition_instrument.Detector.binning == (1, 100)
    assert md.Acquisition_instrument.Detector.processing == "Dark Subtracted"
    assert md.Acquisition_instrument.Detector.sensor_roi == (0, 0, 100, 1336)
    assert md.Acquisition_instrument.Spectrum_image.drift_correction_periodicity == 1
    assert (
        md.Acquisition_instrument.Spectrum_image.drift_correction_units == "second(s)"
    )
    assert md.Acquisition_instrument.Spectrum_image.mode == "LineScan"


def test_read_MonarcCL_SI_metadata():
    fname = DM_2D_PATH / "test-MonarcCL_spectrum-SI.dm4"
    s = hs.load(fname)
    md = s.metadata
    assert md.Signal.signal_type == "CL"
    assert md.Signal.format == "Spectrum image"
    assert md.Signal.quantity == "Intensity (Counts)"
    assert md.General.date == "2021-09-16"
    assert md.General.time == "12:06:16"
    assert md.General.original_filename == "test-MonarcCL_spectrum-SI.dm4"
    assert md.General.title == "Monarc_SI_9pix"
    assert md.Acquisition_instrument.Detector.detector_type == "CCD"
    assert md.Acquisition_instrument.SEM.acquisition_mode == "SEM"
    assert md.Acquisition_instrument.SEM.microscope == "Zeiss SEM COM"
    assert md.Acquisition_instrument.SEM.beam_energy == 5.0
    np.testing.assert_allclose(md.Acquisition_instrument.SEM.magnification, 5884.540039)
    assert (
        md.Acquisition_instrument.Spectrometer.acquisition_mode == "Parallel dispersive"
    )
    assert md.Acquisition_instrument.Spectrometer.Grating.groove_density == 1200.0
    assert md.Acquisition_instrument.Spectrometer.entrance_slit_width == 0.256
    assert md.Acquisition_instrument.Spectrometer.bandpass == 0.9984
    np.testing.assert_allclose(
        md.Acquisition_instrument.Detector.exposure_per_frame, 0.05
    )
    assert md.Acquisition_instrument.Detector.frames == 1
    np.testing.assert_allclose(
        md.Acquisition_instrument.Detector.integration_time, 0.05
    )
    assert md.Acquisition_instrument.Detector.pixel_size == 20.0
    np.testing.assert_allclose(
        md.Acquisition_instrument.Detector.saturation_fraction[0], 0.004867628
    )
    assert md.Acquisition_instrument.Detector.binning == (2, 400)
    assert md.Acquisition_instrument.Detector.processing == "Dark Subtracted"
    assert md.Acquisition_instrument.Detector.sensor_roi == (0, 0, 400, 1340)
    assert md.Acquisition_instrument.Spectrum_image.mode == "2D Array"


def test_read_MonarcCL_image_metadata():
    fname = DM_2D_PATH / "test-MonarcCL_mono-image.dm4"
    s = hs.load(fname)
    md = s.metadata
    assert md.Signal.signal_type == "CL"
    assert md.Signal.quantity == "Intensity (counts)"
    assert md.General.date == "2021-05-14"
    assert md.General.time == "11:41:07"
    assert md.General.original_filename == "test-MonarcCL_mono-image.dm4"
    assert md.General.title == "MonoCL-image-rebin"
    assert md.Acquisition_instrument.SEM.acquisition_mode == "SEM"
    assert md.Acquisition_instrument.SEM.microscope == "Zeiss SEM COM"
    assert md.Acquisition_instrument.SEM.beam_energy == 3.0
    assert md.Acquisition_instrument.SEM.magnification == 2500.0
    assert md.Acquisition_instrument.SEM.dwell_time == 1e-5
    assert md.Acquisition_instrument.Spectrometer.Grating.groove_density == 300.0
    assert md.Acquisition_instrument.Spectrometer.entrance_slit_width == 0.961
    np.testing.assert_allclose(
        md.Acquisition_instrument.Spectrometer.bandpass, 14.9915999
    )
    assert md.Acquisition_instrument.Detector.pmt_voltage == 1000


def test_location():
    fname_list = [
        "Fei HAADF-DE_location.dm3",
        "Fei HAADF-FR_location.dm3",
        "Fei HAADF-MX_location.dm3",
        "Fei HAADF-UK_location.dm3",
    ]
    s = hs.load(TEST_DATA_PATH / fname_list[0])
    assert s.metadata.General.date == "2016-08-27"
    assert s.metadata.General.time == "20:54:33"
    s = hs.load(TEST_DATA_PATH / fname_list[1])
    assert s.metadata.General.date == "2016-08-27"
    assert s.metadata.General.time == "20:55:20"
    s = hs.load(TEST_DATA_PATH / fname_list[2])
    assert s.metadata.General.date == "2016-08-27"
    assert s.metadata.General.time == "20:55:59"
    s = hs.load(TEST_DATA_PATH / fname_list[3])
    assert s.metadata.General.date == "2016-08-27"
    assert s.metadata.General.time == "20:52:30"


def test_multi_signal():
    fname = DM_2D_PATH / "multi_signal.dm3"
    s = hs.load(fname)

    # Make sure file is read as a list, and exactly two signals are found
    assert isinstance(s, list)
    assert len(s) == 2

    s1, s2 = s

    # First signal is an image, second is a plot
    assert isinstance(s1, hs.signals.Signal2D)
    assert isinstance(s2, hs.signals.Signal1D)

    s1_md_truth = {
        "_HyperSpy": {
            "Folding": {
                "unfolded": False,
                "signal_unfolded": False,
                "original_shape": None,
                "original_axes_manager": None,
            }
        },
        "General": {
            "title": "HAADF",
            "original_filename": "multi_signal.dm3",
            "date": "2019-12-10",
            "time": "15:32:41",
            "authors": "JohnDoe",
            "FileIO": {
                "0": {
                    "operation": "load",
                    "hyperspy_version": hs.__version__,
                    "io_plugin": "rsciio.digitalmicrograph",
                }
            },
        },
        "Signal": {
            "signal_type": "",
            "quantity": "Intensity",
            "Noise_properties": {
                "Variance_linear_model": {"gain_factor": 1.0, "gain_offset": 0.0}
            },
        },
        "Acquisition_instrument": {
            "TEM": {
                "beam_energy": 300.0,
                "Stage": {
                    "tilt_alpha": 0.001951998453075299,
                    "x": 0.07872150000000001,
                    "y": 0.100896,
                    "z": -0.0895279,
                },
                "acquisition_mode": "STEM",
                "beam_current": 0.0,
                "camera_length": 77.0,
                "magnification": 10000000.0,
                "microscope": "Example Microscope",
                "dwell_time": 3.2400001525878905e-05,
            }
        },
        "Sample": {"description": "PrecipitateA"},
    }

    s2_md_truth = {
        "_HyperSpy": {
            "Folding": {
                "unfolded": False,
                "signal_unfolded": False,
                "original_shape": None,
                "original_axes_manager": None,
            }
        },
        "General": {
            "title": "Plot",
            "original_filename": "multi_signal.dm3",
            "FileIO": {
                "0": {
                    "operation": "load",
                    "hyperspy_version": hs.__version__,
                    "io_plugin": "rsciio.digitalmicrograph",
                }
            },
        },
        "Signal": {
            "signal_type": "",
            "quantity": "Intensity",
            "Noise_properties": {
                "Variance_linear_model": {"gain_factor": 1.0, "gain_offset": 0.0}
            },
        },
    }
    # remove timestamps from metadata since these are runtime dependent
    del s1.metadata.General.FileIO.Number_0.timestamp
    del s2.metadata.General.FileIO.Number_0.timestamp

    # make sure the metadata dictionaries are as we expect
    assert s1.metadata.as_dictionary() == s1_md_truth
    assert s2.metadata.as_dictionary() == s2_md_truth

    # rather than testing all of original metadata (huge), use length as a proxy
    assert len(json.dumps(s1.original_metadata.as_dictionary())) == 17779
    assert len(json.dumps(s2.original_metadata.as_dictionary())) == 15024

    # test axes
    assert s1.axes_manager[-1].is_binned is False
    assert s2.axes_manager[-1].is_binned is False

    # simple tests on the data itself:
    assert s1.data.sum() == 949490255
    assert s1.data.shape == (512, 512)
    assert s2.data.sum() == pytest.approx(28.085794, 0.01)
    assert s2.data.shape == (512,)


def generate_parameters():
    parameters = []
    for dim in range(1, 4):
        for key in dm3_data_types.keys():
            subfolder = f"{dim}D"
            filename = TEST_DATA_PATH / subfolder / f"test-{key}.dm3"
            parameters.append(
                {
                    "filename": filename,
                    "subfolder": subfolder,
                    "key": key,
                }
            )
        for key in dm4_data_types.keys():
            subfolder = f"{dim}D"
            filename = TEST_DATA_PATH / subfolder / f"test-{key}.dm4"
            parameters.append(
                {
                    "filename": filename,
                    "subfolder": subfolder,
                    "key": key,
                }
            )
    return parameters


## modify this test for axes, maybe extra tests for metadata reads?
@pytest.mark.parametrize("pdict", generate_parameters())
@pytest.mark.parametrize("lazy", (True, False))
def test_data_and_axes(pdict, lazy):
    s = hs.load(pdict["filename"], lazy=lazy)
    if lazy:
        s.compute(close_file=True)
    key = pdict["key"]
    assert s.data.dtype == np.dtype(dm4_data_types[key])
    subfolder = pdict["subfolder"]
    print(pdict["subfolder"])
    if subfolder == "1D":
        dat = np.arange(1, 3)
        assert s.axes_manager.signal_shape == (2,)
        assert s.axes_manager.navigation_shape == ()
    elif subfolder == "2D":
        dat = np.arange(1, 5).reshape(2, 2)
        assert s.axes_manager.signal_shape == (2, 2)
        assert s.axes_manager.navigation_shape == ()
    elif subfolder == "3D":
        dat = np.arange(1, 9).reshape(2, 2, 2)
        assert s.axes_manager.signal_shape == (2, 2)
        assert s.axes_manager.navigation_shape == (2,)
    else:
        raise ValueError
    dat = dat.astype(dm4_data_types[key])
    if key in (8, 23):  # RGBA
        dat["A"][:] = 0
    np.testing.assert_array_equal(
        s.data,
        dat,
        err_msg=f"content {subfolder} type {key}: "
        f"\n{str(s.data)} not equal to \n{str(dat)}",
    )


def test_axes_bug_for_image():
    fname = DM_2D_PATH / "test_STEM_image.dm3"
    s = hs.load(fname)
    assert s.axes_manager[1].name == "y"


def test_load_stackbuilder_imagestack():
    image_stack = hs.load(TEST_DATA_PATH / "test_stackbuilder_imagestack.dm3")
    data_dimensions = image_stack.data.ndim
    am = image_stack.axes_manager
    axes_dimensions = am.signal_dimension + am.navigation_dimension
    assert data_dimensions == axes_dimensions
    md = image_stack.metadata
    assert md.Acquisition_instrument.TEM.acquisition_mode == "STEM"
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.beam_current, 0.0)
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.beam_energy, 200.0)
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.camera_length, 15.0)
    np.testing.assert_allclose(
        md.Acquisition_instrument.TEM.dwell_time, 0.03000005078125
    )
    np.testing.assert_allclose(md.Acquisition_instrument.TEM.magnification, 200000.0)
    assert md.Acquisition_instrument.TEM.microscope == "JEM-ARM200F"
    assert md.General.date == "2015-05-17"
    assert md.General.original_filename == "test_stackbuilder_imagestack.dm3"
    assert md.General.title == "stackbuilder_test4_16x2"
    assert md.General.time == "17:00:16"
    assert md.Sample.description == "DWNC"
    assert md.Signal.quantity == "Electrons (Counts)"
    assert md.Signal.signal_type == ""
    assert am.signal_axes[0].is_binned is False
    np.testing.assert_allclose(
        md.Signal.Noise_properties.Variance_linear_model.gain_factor, 0.15674974
    )
    np.testing.assert_allclose(
        md.Signal.Noise_properties.Variance_linear_model.gain_offset, 2228741.5
    )


def test_load_packed_complex():
    # Packed complex is typically used for FFT data
    fname = DM_2D_PATH / "test_fft_packed_complex8.dm4"
    file_content = file_reader(fname)
    data_dtype = file_content[0]["data"].dtype
    assert data_dtype == np.complex64