1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
|
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.
import json
from pathlib import Path
import numpy as np
import pytest
from rsciio.digitalmicrograph._api import (
DigitalMicrographReader,
ImageObject,
file_reader,
)
from rsciio.tests.generate_dm_testing_files import dm3_data_types, dm4_data_types
hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
TEST_DATA_PATH = Path(__file__).parent / "data" / "digitalmicrograph"
DM_1D_PATH = TEST_DATA_PATH / "1D"
DM_2D_PATH = TEST_DATA_PATH / "2D"
DM_3D_PATH = TEST_DATA_PATH / "3D"
class TestImageObject:
def setup_method(self, method):
self.imageobject = ImageObject({}, "")
def _load_file(self, fname):
with open(fname, "rb") as f:
dm = DigitalMicrographReader(f)
dm.parse_file()
self.imdict = dm.get_image_dictionaries()
return [ImageObject(imdict, fname) for imdict in self.imdict]
def test_get_microscope_name(self):
fname = DM_2D_PATH / "test_diffraction_pattern_tags_removed.dm3"
images = self._load_file(fname)
image = images[0]
# Should return None because the tags are missing
assert image._get_microscope_name(image.imdict.ImageTags) is None
fname = DM_2D_PATH / "test_diffraction_pattern.dm3"
images = self._load_file(fname)
image = images[0]
assert image._get_microscope_name(image.imdict.ImageTags) == "FEI Tecnai"
def test_get_date(self):
assert self.imageobject._get_date("11/13/2016") == "2016-11-13"
def test_get_time(self):
assert self.imageobject._get_time("6:56:37 pm") == "18:56:37"
def test_parse_string(self):
assert self.imageobject._parse_string("") is None
assert self.imageobject._parse_string("string") == "string"
def test_parse_string_convert_float(self):
assert self.imageobject._parse_string("5", False) == "5"
assert self.imageobject._parse_string("5", True) == 5
assert self.imageobject._parse_string("Imaging", True) is None
def test_missing_tag():
fname = DM_2D_PATH / "test_diffraction_pattern_tags_removed.dm3"
s = hs.load(fname)
md = s.metadata
np.testing.assert_allclose(md.Acquisition_instrument.TEM.beam_energy, 200.0)
np.testing.assert_allclose(md.Acquisition_instrument.TEM.Camera.exposure, 0.2)
assert md.General.date == "2014-07-09"
assert md.General.time == "18:56:37"
assert md.General.title == "test_diffraction_pattern_tags_removed"
def test_read_TEM_metadata():
fname = TEST_DATA_PATH / ".." / "tiff" / "test_dm_image_um_unit.dm3"
s = hs.load(fname)
md = s.metadata
assert md.Acquisition_instrument.TEM.acquisition_mode == "TEM"
np.testing.assert_allclose(md.Acquisition_instrument.TEM.beam_energy, 200.0)
np.testing.assert_allclose(md.Acquisition_instrument.TEM.Camera.exposure, 0.5)
np.testing.assert_allclose(md.Acquisition_instrument.TEM.magnification, 51.0)
assert md.Acquisition_instrument.TEM.microscope == "FEI Tecnai"
assert md.General.date == "2015-07-20"
assert md.General.original_filename == "test_dm_image_um_unit.dm3"
assert md.General.title == "test_dm_image_um_unit"
assert md.General.time == "18:48:25"
assert md.Signal.quantity == "Intensity"
assert md.Signal.signal_type == ""
def test_read_Diffraction_metadata():
fname = DM_2D_PATH / "test_diffraction_pattern.dm3"
s = hs.load(fname)
md = s.metadata
assert md.Acquisition_instrument.TEM.acquisition_mode == "TEM"
np.testing.assert_allclose(md.Acquisition_instrument.TEM.beam_energy, 200.0)
np.testing.assert_allclose(md.Acquisition_instrument.TEM.Camera.exposure, 0.2)
np.testing.assert_allclose(md.Acquisition_instrument.TEM.camera_length, 320.0)
assert md.Acquisition_instrument.TEM.microscope == "FEI Tecnai"
assert md.General.date == "2014-07-09"
assert md.General.original_filename == "test_diffraction_pattern.dm3"
assert md.General.title == "test_diffraction_pattern"
assert md.General.time == "18:56:37"
assert md.Signal.quantity == "Intensity"
assert md.Signal.signal_type == ""
def test_read_STEM_metadata():
fname = DM_2D_PATH / "test_STEM_image.dm3"
s = hs.load(fname)
md = s.metadata
assert md.Acquisition_instrument.TEM.acquisition_mode == "STEM"
np.testing.assert_allclose(md.Acquisition_instrument.TEM.beam_energy, 200.0)
np.testing.assert_allclose(md.Acquisition_instrument.TEM.dwell_time, 3.5e-6)
np.testing.assert_allclose(md.Acquisition_instrument.TEM.camera_length, 135.0)
np.testing.assert_allclose(md.Acquisition_instrument.TEM.magnification, 225000.0)
assert md.Acquisition_instrument.TEM.microscope == "FEI Titan"
assert md.General.date == "2016-08-08"
assert md.General.original_filename == "test_STEM_image.dm3"
assert md.General.title == "test_STEM_image"
assert md.General.time == "16:26:37"
assert md.Signal.quantity == "Intensity"
assert md.Signal.signal_type == ""
def test_read_EELS_metadata():
fname = DM_1D_PATH / "test-EELS_spectrum.dm3"
s = hs.load(fname)
md = s.metadata
assert md.Acquisition_instrument.TEM.acquisition_mode == "STEM"
np.testing.assert_allclose(md.Acquisition_instrument.TEM.beam_energy, 200.0)
assert md.Acquisition_instrument.TEM.microscope == "FEI Titan"
np.testing.assert_allclose(md.Acquisition_instrument.TEM.camera_length, 135.0)
np.testing.assert_allclose(md.Acquisition_instrument.TEM.magnification, 640000.0)
np.testing.assert_allclose(
md.Acquisition_instrument.TEM.Stage.tilt_alpha, 24.95, atol=1e-2
)
np.testing.assert_allclose(
md.Acquisition_instrument.TEM.Stage.x, -0.478619, atol=1e-2
)
np.testing.assert_allclose(
md.Acquisition_instrument.TEM.Stage.y, 0.0554612, atol=1e-2
)
np.testing.assert_allclose(
md.Acquisition_instrument.TEM.Stage.z, 0.036348, atol=1e-2
)
np.testing.assert_allclose(md.Acquisition_instrument.TEM.convergence_angle, 21.0)
np.testing.assert_allclose(
md.Acquisition_instrument.TEM.Detector.EELS.collection_angle, 0.0
)
np.testing.assert_allclose(
md.Acquisition_instrument.TEM.Detector.EELS.exposure, 0.0035
)
np.testing.assert_allclose(
md.Acquisition_instrument.TEM.Detector.EELS.frame_number, 50
)
assert md.Acquisition_instrument.TEM.Detector.EELS.spectrometer == "GIF Quantum ER"
assert md.Acquisition_instrument.TEM.Detector.EELS.aperture_size == 5.0
assert md.General.date == "2016-08-08"
assert md.General.original_filename == "test-EELS_spectrum.dm3"
assert md.General.title == "EELS Acquire"
assert md.General.time == "19:35:17"
assert md.Signal.quantity == "Electrons (Counts)"
assert md.Signal.signal_type == "EELS"
np.testing.assert_allclose(
md.Signal.Noise_properties.Variance_linear_model.gain_factor, 0.1285347
)
np.testing.assert_allclose(
md.Signal.Noise_properties.Variance_linear_model.gain_offset, 0.0
)
# tag name is "align min. correlation coefficient"
assert (
s.original_metadata.ImageList.TagGroup0.ImageTags.EELS.Acquisition.Align_min_correlation_coefficient
== 0.5
)
def test_read_SI_metadata():
fname = DM_3D_PATH / "EELS_SI.dm4"
s = hs.load(fname)
md = s.metadata
assert md.Acquisition_instrument.TEM.acquisition_mode == "STEM"
assert md.General.date == "2019-05-14"
assert md.General.time == "20:50:13"
np.testing.assert_allclose(
md.Acquisition_instrument.TEM.Detector.EELS.aperture_size, 5.0
)
np.testing.assert_allclose(md.Acquisition_instrument.TEM.convergence_angle, 21.0)
np.testing.assert_allclose(
md.Acquisition_instrument.TEM.Detector.EELS.collection_angle, 62.0
)
np.testing.assert_allclose(
md.Acquisition_instrument.TEM.Detector.EELS.frame_number, 1
)
np.testing.assert_allclose(
md.Acquisition_instrument.TEM.Detector.EELS.dwell_time, 1.9950125e-2
)
def test_read_EDS_metadata():
pytest.importorskip("exspy", reason="exspy not installed.")
fname = DM_1D_PATH / "test-EDS_spectrum.dm3"
s = hs.load(fname)
md = s.metadata
assert md.Acquisition_instrument.TEM.acquisition_mode == "STEM"
np.testing.assert_allclose(
md.Acquisition_instrument.TEM.Detector.EDS.azimuth_angle, 45.0
)
np.testing.assert_allclose(
md.Acquisition_instrument.TEM.Detector.EDS.elevation_angle, 18.0
)
np.testing.assert_allclose(
md.Acquisition_instrument.TEM.Detector.EDS.energy_resolution_MnKa, 130.0
)
np.testing.assert_allclose(
md.Acquisition_instrument.TEM.Detector.EDS.live_time, 3.806
)
np.testing.assert_allclose(
md.Acquisition_instrument.TEM.Detector.EDS.real_time, 4.233
)
np.testing.assert_allclose(
md.Acquisition_instrument.TEM.Stage.tilt_alpha, 24.95, atol=1e-2
)
np.testing.assert_allclose(md.Acquisition_instrument.TEM.beam_energy, 200.0)
assert md.Acquisition_instrument.TEM.microscope == "FEI Titan"
np.testing.assert_allclose(md.Acquisition_instrument.TEM.camera_length, 135.0)
np.testing.assert_allclose(md.Acquisition_instrument.TEM.magnification, 320000.0)
assert md.General.date == "2016-08-08"
assert md.General.original_filename == "test-EDS_spectrum.dm3"
assert md.General.title == "EDS Spectrum"
assert md.General.time == "21:46:19"
assert md.Signal.quantity == "X-rays (Counts)"
assert md.Signal.signal_type == "EDS_TEM"
np.testing.assert_allclose(
md.Signal.Noise_properties.Variance_linear_model.gain_factor, 1.0
)
np.testing.assert_allclose(
md.Signal.Noise_properties.Variance_linear_model.gain_offset, 0.0
)
assert s.axes_manager[-1].units == "keV"
def test_read_MonoCL_pmt_metadata():
fname = DM_1D_PATH / "test-MonoCL_spectrum-pmt.dm4"
s = hs.load(fname)
md = s.metadata
assert md.Signal.signal_type == "CL"
assert md.Signal.format == "Spectrum"
assert md.Signal.quantity == "Intensity (Counts)"
assert md.General.date == "2020-10-27"
assert md.General.original_filename == "test-MonoCL_spectrum-pmt.dm4"
assert md.General.title == "test-CL_spectrum-pmt"
assert (
md.Acquisition_instrument.Spectrometer.acquisition_mode == "Serial dispersive"
)
assert md.Acquisition_instrument.Detector.detector_type == "PMT"
assert md.Acquisition_instrument.Spectrometer.Grating.groove_density == 1200
assert md.Acquisition_instrument.Detector.integration_time == 1.0
assert md.Acquisition_instrument.Spectrometer.step_size == 0.5
np.testing.assert_allclose(
md.Acquisition_instrument.Spectrometer.start_wavelength, 166.233642
)
def test_read_MonarcCL_pmt_metadata():
fname = DM_1D_PATH / "test-MonarcCL_spectrum-pmt.dm4"
s = hs.load(fname)
md = s.metadata
assert md.Signal.signal_type == "CL"
assert md.Signal.format == "Spectrum"
assert md.Signal.quantity == "Intensity (Counts)"
assert md.General.date == "2022-01-17"
assert md.General.original_filename == "test-MonarcCL_spectrum-pmt.dm4"
assert md.General.title == "CL_15kX_3-60_pmt2s"
assert (
md.Acquisition_instrument.Spectrometer.acquisition_mode == "Serial dispersive"
)
assert md.Acquisition_instrument.Detector.detector_type == "PMT"
assert md.Acquisition_instrument.Spectrometer.Grating.groove_density == 300
assert md.Acquisition_instrument.Detector.integration_time == 2.0
assert md.Acquisition_instrument.Spectrometer.step_size == 1.0
np.testing.assert_allclose(
md.Acquisition_instrument.Spectrometer.start_wavelength, 160.067505
)
def test_read_MonoCL_ccd_metadata():
fname = DM_1D_PATH / "test-MonoCL_spectrum-ccd.dm4"
s = hs.load(fname)
md = s.metadata
assert md.Signal.signal_type == "CL"
assert md.Signal.format == "Spectrum"
assert md.Signal.quantity == "Intensity (Counts)"
assert md.General.date == "2020-09-11"
assert md.General.time == "17:04:19"
assert md.General.original_filename == "test-MonoCL_spectrum-ccd.dm4"
assert md.General.title == "test-CL_spectrum-ccd"
assert md.Acquisition_instrument.Detector.detector_type == "CCD"
assert md.Acquisition_instrument.SEM.acquisition_mode == "SEM"
assert md.Acquisition_instrument.SEM.microscope == "Ultra55"
assert md.Acquisition_instrument.SEM.beam_energy == 5.0
assert md.Acquisition_instrument.SEM.magnification == 10104.515625
assert (
md.Acquisition_instrument.Spectrometer.acquisition_mode == "Parallel dispersive"
)
assert md.Acquisition_instrument.Spectrometer.Grating.groove_density == 300.0
assert md.Acquisition_instrument.Detector.exposure_per_frame == 30.0
assert md.Acquisition_instrument.Detector.frames == 1.0
assert md.Acquisition_instrument.Detector.integration_time == 30.0
np.testing.assert_allclose(
md.Acquisition_instrument.Spectrometer.central_wavelength, 949.974182
)
np.testing.assert_allclose(
md.Acquisition_instrument.Detector.saturation_fraction, 0.01861909
)
assert md.Acquisition_instrument.Detector.binning == (1, 100)
assert md.Acquisition_instrument.Detector.processing == "Dark Subtracted"
assert md.Acquisition_instrument.Detector.sensor_roi == (0, 0, 100, 1336)
assert md.Acquisition_instrument.Detector.pixel_size == 20.0
def test_read_MonarcCL_ccd_metadata():
fname = DM_1D_PATH / "test-MonarcCL_spectrum-ccd.dm4"
s = hs.load(fname)
md = s.metadata
assert md.Signal.signal_type == "CL"
assert md.Signal.format == "Spectrum"
assert md.Signal.quantity == "Intensity (Counts)"
assert md.General.date == "2022-01-17"
assert md.General.time == "16:09:21"
assert md.General.original_filename == "test-MonarcCL_spectrum-ccd.dm4"
assert md.General.title == "CL_15kX_3-60_CCD300s_bin2"
assert md.Acquisition_instrument.Detector.detector_type == "CCD"
assert md.Acquisition_instrument.SEM.acquisition_mode == "SEM"
assert md.Acquisition_instrument.SEM.microscope == "Ultra55"
assert md.Acquisition_instrument.SEM.beam_energy == 3.0
assert md.Acquisition_instrument.SEM.magnification == 15000.0
assert (
md.Acquisition_instrument.Spectrometer.acquisition_mode == "Parallel dispersive"
)
np.testing.assert_allclose(
md.Acquisition_instrument.Spectrometer.central_wavelength, 320.049683
)
assert md.Acquisition_instrument.Spectrometer.Grating.groove_density == 300.0
assert md.Acquisition_instrument.Detector.exposure_per_frame == 300.0
assert md.Acquisition_instrument.Detector.frames == 1.0
assert md.Acquisition_instrument.Detector.integration_time == 300.0
np.testing.assert_allclose(
md.Acquisition_instrument.Detector.saturation_fraction, 0.08890307
)
assert md.Acquisition_instrument.Detector.binning == (2, 100)
assert md.Acquisition_instrument.Detector.processing == "Dark Subtracted"
assert md.Acquisition_instrument.Detector.sensor_roi == (0, 0, 100, 1336)
assert md.Acquisition_instrument.Detector.pixel_size == 20.0
def test_read_MonoCL_SI_metadata():
fname = DM_2D_PATH / "test-MonoCL_spectrum-SI.dm4"
s = hs.load(fname)
md = s.metadata
assert md.Signal.signal_type == "CL"
assert md.Signal.format == "Spectrum image"
assert md.Signal.quantity == "Intensity (Counts)"
assert md.General.date == "2020-04-11"
assert md.General.time == "14:41:01"
assert md.General.original_filename == "test-MonoCL_spectrum-SI.dm4"
assert md.General.title == "test-CL_spectrum-SI"
assert md.Acquisition_instrument.Detector.detector_type == "CCD"
assert md.Acquisition_instrument.SEM.acquisition_mode == "SEM"
assert md.Acquisition_instrument.SEM.microscope == "Ultra55"
assert md.Acquisition_instrument.SEM.beam_energy == 5.0
np.testing.assert_allclose(
md.Acquisition_instrument.SEM.magnification, 31661.427734
)
assert (
md.Acquisition_instrument.Spectrometer.acquisition_mode == "Parallel dispersive"
)
assert md.Acquisition_instrument.Spectrometer.Grating.groove_density == 600.0
np.testing.assert_allclose(
md.Acquisition_instrument.Detector.exposure_per_frame, 0.05
)
assert md.Acquisition_instrument.Detector.frames == 1
np.testing.assert_allclose(
md.Acquisition_instrument.Detector.integration_time, 0.05
)
assert md.Acquisition_instrument.Detector.pixel_size == 20.0
np.testing.assert_allclose(
md.Acquisition_instrument.Spectrometer.central_wavelength, 869.983825
)
np.testing.assert_allclose(
md.Acquisition_instrument.Detector.saturation_fraction[0], 0.09676377
)
assert md.Acquisition_instrument.Detector.binning == (1, 100)
assert md.Acquisition_instrument.Detector.processing == "Dark Subtracted"
assert md.Acquisition_instrument.Detector.sensor_roi == (0, 0, 100, 1336)
assert md.Acquisition_instrument.Spectrum_image.drift_correction_periodicity == 1
assert (
md.Acquisition_instrument.Spectrum_image.drift_correction_units == "second(s)"
)
assert md.Acquisition_instrument.Spectrum_image.mode == "LineScan"
def test_read_MonarcCL_SI_metadata():
fname = DM_2D_PATH / "test-MonarcCL_spectrum-SI.dm4"
s = hs.load(fname)
md = s.metadata
assert md.Signal.signal_type == "CL"
assert md.Signal.format == "Spectrum image"
assert md.Signal.quantity == "Intensity (Counts)"
assert md.General.date == "2021-09-16"
assert md.General.time == "12:06:16"
assert md.General.original_filename == "test-MonarcCL_spectrum-SI.dm4"
assert md.General.title == "Monarc_SI_9pix"
assert md.Acquisition_instrument.Detector.detector_type == "CCD"
assert md.Acquisition_instrument.SEM.acquisition_mode == "SEM"
assert md.Acquisition_instrument.SEM.microscope == "Zeiss SEM COM"
assert md.Acquisition_instrument.SEM.beam_energy == 5.0
np.testing.assert_allclose(md.Acquisition_instrument.SEM.magnification, 5884.540039)
assert (
md.Acquisition_instrument.Spectrometer.acquisition_mode == "Parallel dispersive"
)
assert md.Acquisition_instrument.Spectrometer.Grating.groove_density == 1200.0
assert md.Acquisition_instrument.Spectrometer.entrance_slit_width == 0.256
assert md.Acquisition_instrument.Spectrometer.bandpass == 0.9984
np.testing.assert_allclose(
md.Acquisition_instrument.Detector.exposure_per_frame, 0.05
)
assert md.Acquisition_instrument.Detector.frames == 1
np.testing.assert_allclose(
md.Acquisition_instrument.Detector.integration_time, 0.05
)
assert md.Acquisition_instrument.Detector.pixel_size == 20.0
np.testing.assert_allclose(
md.Acquisition_instrument.Detector.saturation_fraction[0], 0.004867628
)
assert md.Acquisition_instrument.Detector.binning == (2, 400)
assert md.Acquisition_instrument.Detector.processing == "Dark Subtracted"
assert md.Acquisition_instrument.Detector.sensor_roi == (0, 0, 400, 1340)
assert md.Acquisition_instrument.Spectrum_image.mode == "2D Array"
def test_read_MonarcCL_image_metadata():
fname = DM_2D_PATH / "test-MonarcCL_mono-image.dm4"
s = hs.load(fname)
md = s.metadata
assert md.Signal.signal_type == "CL"
assert md.Signal.quantity == "Intensity (counts)"
assert md.General.date == "2021-05-14"
assert md.General.time == "11:41:07"
assert md.General.original_filename == "test-MonarcCL_mono-image.dm4"
assert md.General.title == "MonoCL-image-rebin"
assert md.Acquisition_instrument.SEM.acquisition_mode == "SEM"
assert md.Acquisition_instrument.SEM.microscope == "Zeiss SEM COM"
assert md.Acquisition_instrument.SEM.beam_energy == 3.0
assert md.Acquisition_instrument.SEM.magnification == 2500.0
assert md.Acquisition_instrument.SEM.dwell_time == 1e-5
assert md.Acquisition_instrument.Spectrometer.Grating.groove_density == 300.0
assert md.Acquisition_instrument.Spectrometer.entrance_slit_width == 0.961
np.testing.assert_allclose(
md.Acquisition_instrument.Spectrometer.bandpass, 14.9915999
)
assert md.Acquisition_instrument.Detector.pmt_voltage == 1000
def test_location():
fname_list = [
"Fei HAADF-DE_location.dm3",
"Fei HAADF-FR_location.dm3",
"Fei HAADF-MX_location.dm3",
"Fei HAADF-UK_location.dm3",
]
s = hs.load(TEST_DATA_PATH / fname_list[0])
assert s.metadata.General.date == "2016-08-27"
assert s.metadata.General.time == "20:54:33"
s = hs.load(TEST_DATA_PATH / fname_list[1])
assert s.metadata.General.date == "2016-08-27"
assert s.metadata.General.time == "20:55:20"
s = hs.load(TEST_DATA_PATH / fname_list[2])
assert s.metadata.General.date == "2016-08-27"
assert s.metadata.General.time == "20:55:59"
s = hs.load(TEST_DATA_PATH / fname_list[3])
assert s.metadata.General.date == "2016-08-27"
assert s.metadata.General.time == "20:52:30"
def test_multi_signal():
fname = DM_2D_PATH / "multi_signal.dm3"
s = hs.load(fname)
# Make sure file is read as a list, and exactly two signals are found
assert isinstance(s, list)
assert len(s) == 2
s1, s2 = s
# First signal is an image, second is a plot
assert isinstance(s1, hs.signals.Signal2D)
assert isinstance(s2, hs.signals.Signal1D)
s1_md_truth = {
"_HyperSpy": {
"Folding": {
"unfolded": False,
"signal_unfolded": False,
"original_shape": None,
"original_axes_manager": None,
}
},
"General": {
"title": "HAADF",
"original_filename": "multi_signal.dm3",
"date": "2019-12-10",
"time": "15:32:41",
"authors": "JohnDoe",
"FileIO": {
"0": {
"operation": "load",
"hyperspy_version": hs.__version__,
"io_plugin": "rsciio.digitalmicrograph",
}
},
},
"Signal": {
"signal_type": "",
"quantity": "Intensity",
"Noise_properties": {
"Variance_linear_model": {"gain_factor": 1.0, "gain_offset": 0.0}
},
},
"Acquisition_instrument": {
"TEM": {
"beam_energy": 300.0,
"Stage": {
"tilt_alpha": 0.001951998453075299,
"x": 0.07872150000000001,
"y": 0.100896,
"z": -0.0895279,
},
"acquisition_mode": "STEM",
"beam_current": 0.0,
"camera_length": 77.0,
"magnification": 10000000.0,
"microscope": "Example Microscope",
"dwell_time": 3.2400001525878905e-05,
}
},
"Sample": {"description": "PrecipitateA"},
}
s2_md_truth = {
"_HyperSpy": {
"Folding": {
"unfolded": False,
"signal_unfolded": False,
"original_shape": None,
"original_axes_manager": None,
}
},
"General": {
"title": "Plot",
"original_filename": "multi_signal.dm3",
"FileIO": {
"0": {
"operation": "load",
"hyperspy_version": hs.__version__,
"io_plugin": "rsciio.digitalmicrograph",
}
},
},
"Signal": {
"signal_type": "",
"quantity": "Intensity",
"Noise_properties": {
"Variance_linear_model": {"gain_factor": 1.0, "gain_offset": 0.0}
},
},
}
# remove timestamps from metadata since these are runtime dependent
del s1.metadata.General.FileIO.Number_0.timestamp
del s2.metadata.General.FileIO.Number_0.timestamp
# make sure the metadata dictionaries are as we expect
assert s1.metadata.as_dictionary() == s1_md_truth
assert s2.metadata.as_dictionary() == s2_md_truth
# rather than testing all of original metadata (huge), use length as a proxy
assert len(json.dumps(s1.original_metadata.as_dictionary())) == 17779
assert len(json.dumps(s2.original_metadata.as_dictionary())) == 15024
# test axes
assert s1.axes_manager[-1].is_binned is False
assert s2.axes_manager[-1].is_binned is False
# simple tests on the data itself:
assert s1.data.sum() == 949490255
assert s1.data.shape == (512, 512)
assert s2.data.sum() == pytest.approx(28.085794, 0.01)
assert s2.data.shape == (512,)
def generate_parameters():
parameters = []
for dim in range(1, 4):
for key in dm3_data_types.keys():
subfolder = f"{dim}D"
filename = TEST_DATA_PATH / subfolder / f"test-{key}.dm3"
parameters.append(
{
"filename": filename,
"subfolder": subfolder,
"key": key,
}
)
for key in dm4_data_types.keys():
subfolder = f"{dim}D"
filename = TEST_DATA_PATH / subfolder / f"test-{key}.dm4"
parameters.append(
{
"filename": filename,
"subfolder": subfolder,
"key": key,
}
)
return parameters
## modify this test for axes, maybe extra tests for metadata reads?
@pytest.mark.parametrize("pdict", generate_parameters())
@pytest.mark.parametrize("lazy", (True, False))
def test_data_and_axes(pdict, lazy):
s = hs.load(pdict["filename"], lazy=lazy)
if lazy:
s.compute(close_file=True)
key = pdict["key"]
assert s.data.dtype == np.dtype(dm4_data_types[key])
subfolder = pdict["subfolder"]
print(pdict["subfolder"])
if subfolder == "1D":
dat = np.arange(1, 3)
assert s.axes_manager.signal_shape == (2,)
assert s.axes_manager.navigation_shape == ()
elif subfolder == "2D":
dat = np.arange(1, 5).reshape(2, 2)
assert s.axes_manager.signal_shape == (2, 2)
assert s.axes_manager.navigation_shape == ()
elif subfolder == "3D":
dat = np.arange(1, 9).reshape(2, 2, 2)
assert s.axes_manager.signal_shape == (2, 2)
assert s.axes_manager.navigation_shape == (2,)
else:
raise ValueError
dat = dat.astype(dm4_data_types[key])
if key in (8, 23): # RGBA
dat["A"][:] = 0
np.testing.assert_array_equal(
s.data,
dat,
err_msg=f"content {subfolder} type {key}: "
f"\n{str(s.data)} not equal to \n{str(dat)}",
)
def test_axes_bug_for_image():
fname = DM_2D_PATH / "test_STEM_image.dm3"
s = hs.load(fname)
assert s.axes_manager[1].name == "y"
def test_load_stackbuilder_imagestack():
image_stack = hs.load(TEST_DATA_PATH / "test_stackbuilder_imagestack.dm3")
data_dimensions = image_stack.data.ndim
am = image_stack.axes_manager
axes_dimensions = am.signal_dimension + am.navigation_dimension
assert data_dimensions == axes_dimensions
md = image_stack.metadata
assert md.Acquisition_instrument.TEM.acquisition_mode == "STEM"
np.testing.assert_allclose(md.Acquisition_instrument.TEM.beam_current, 0.0)
np.testing.assert_allclose(md.Acquisition_instrument.TEM.beam_energy, 200.0)
np.testing.assert_allclose(md.Acquisition_instrument.TEM.camera_length, 15.0)
np.testing.assert_allclose(
md.Acquisition_instrument.TEM.dwell_time, 0.03000005078125
)
np.testing.assert_allclose(md.Acquisition_instrument.TEM.magnification, 200000.0)
assert md.Acquisition_instrument.TEM.microscope == "JEM-ARM200F"
assert md.General.date == "2015-05-17"
assert md.General.original_filename == "test_stackbuilder_imagestack.dm3"
assert md.General.title == "stackbuilder_test4_16x2"
assert md.General.time == "17:00:16"
assert md.Sample.description == "DWNC"
assert md.Signal.quantity == "Electrons (Counts)"
assert md.Signal.signal_type == ""
assert am.signal_axes[0].is_binned is False
np.testing.assert_allclose(
md.Signal.Noise_properties.Variance_linear_model.gain_factor, 0.15674974
)
np.testing.assert_allclose(
md.Signal.Noise_properties.Variance_linear_model.gain_offset, 2228741.5
)
def test_load_packed_complex():
# Packed complex is typically used for FFT data
fname = DM_2D_PATH / "test_fft_packed_complex8.dm4"
file_content = file_reader(fname)
data_dtype = file_content[0]["data"].dtype
assert data_dtype == np.complex64
|