File: test_emd_ncem.py

package info (click to toggle)
python-rosettasciio 0.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,644 kB
  • sloc: python: 36,638; xml: 2,582; makefile: 20; ansic: 4
file content (269 lines) | stat: -rw-r--r-- 10,458 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.


# The EMD format is a hdf5 standard proposed at Lawrence Berkeley
# National Lab (see https://emdatasets.com/ for more information).
# NOT to be confused with the FEI EMD format which was developed later.

import os
import tempfile
from pathlib import Path

import dask.array as da
import numpy as np
import pytest

h5py = pytest.importorskip("h5py", reason="h5py not installed")
hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")

TEST_DATA_PATH = Path(__file__).parent / "data" / "emd"


# Reference data:
data_signal = np.arange(27).reshape((3, 3, 3)).T
data_image = np.arange(9).reshape((3, 3)).T
data_spectrum = np.arange(3).T
sig_metadata = {"a": 1, "b": 2}
user = {
    "name": "John Doe",
    "institution": "TestUniversity",
    "department": "Microscopy",
    "email": "johndoe@web.de",
}
microscope = {"name": "Titan", "voltage": "300kV"}
sample = {"material": "TiO2", "preparation": "FIB"}
comments = {"comment": "Test"}
test_title = "This is a test!"


@pytest.mark.parametrize("lazy", (True, False))
def test_signal_3d_loading(lazy):
    signal = hs.load(TEST_DATA_PATH / "example_signal.emd", lazy=lazy)
    if lazy:
        signal.compute(close_file=True)
    np.testing.assert_equal(signal.data, data_signal)
    assert isinstance(signal, hs.signals.BaseSignal)


def test_image_2d_loading():
    signal = hs.load(TEST_DATA_PATH / "example_image.emd")
    np.testing.assert_equal(signal.data, data_image)
    assert isinstance(signal, hs.signals.Signal2D)


def test_spectrum_1d_loading():
    signal = hs.load(TEST_DATA_PATH / "example_spectrum.emd")
    np.testing.assert_equal(signal.data, data_spectrum)
    assert isinstance(signal, hs.signals.Signal1D)


def test_metadata():
    signal = hs.load(TEST_DATA_PATH / "example_metadata.emd")
    om = signal.original_metadata
    np.testing.assert_equal(signal.data, data_image)
    np.testing.assert_equal(signal.metadata.General.title, test_title)
    np.testing.assert_equal(om.user.as_dictionary(), user)
    np.testing.assert_equal(om.microscope.as_dictionary(), microscope)
    np.testing.assert_equal(om.sample.as_dictionary(), sample)
    np.testing.assert_equal(om.comments.as_dictionary(), comments)
    assert isinstance(signal, hs.signals.Signal2D)


def test_metadata_with_bytes_string():
    pytest.importorskip("natsort", minversion="5.1.0")
    filename = TEST_DATA_PATH / "example_bytes_string_metadata.emd"
    f = h5py.File(filename, "r")
    dim1 = f["test_group"]["data_group"]["dim1"]
    dim1_name = dim1.attrs["name"]
    dim1_units = dim1.attrs["units"]
    f.close()
    assert isinstance(dim1_name, np.bytes_)
    assert isinstance(dim1_units, np.bytes_)
    _ = hs.load(TEST_DATA_PATH / filename)


def test_data_numpy_object_dtype():
    filename = TEST_DATA_PATH / "example_object_dtype_data.emd"
    signal = hs.load(filename)
    np.testing.assert_equal(signal.data, np.array([["a, 2, test1", "a, 2, test1"]]))


def test_data_axis_length_1():
    filename = TEST_DATA_PATH / "example_axis_len_1.emd"
    signal = hs.load(filename)
    assert signal.data.shape == (5, 1, 5)


class TestDatasetName:
    def setup_method(self):
        tmpdir = tempfile.TemporaryDirectory()
        hdf5_dataset_path = os.path.join(tmpdir.name, "test_dataset.emd")
        f = h5py.File(hdf5_dataset_path, mode="w")
        f.attrs.create("version_major", 0)
        f.attrs.create("version_minor", 2)

        dataset_path_list = [
            "/experimental/science_data_0/data",
            "/experimental/science_data_1/data",
            "/processed/science_data_0/data",
        ]
        data_size_list = [(50, 50), (20, 10), (16, 32)]

        for dataset_path, data_size in zip(dataset_path_list, data_size_list):
            group = f.create_group(os.path.dirname(dataset_path))
            group.attrs.create("emd_group_type", 1)
            group.create_dataset(name="data", data=np.random.random(data_size))
            group.create_dataset(name="dim1", data=range(data_size[0]))
            group.create_dataset(name="dim2", data=range(data_size[1]))

        f.close()

        self.hdf5_dataset_path = hdf5_dataset_path
        self.tmpdir = tmpdir
        self.dataset_path_list = dataset_path_list
        self.data_size_list = data_size_list

    def teardown_method(self):
        self.tmpdir.cleanup()

    def test_load_with_dataset_path(self):
        s = hs.load(self.hdf5_dataset_path)
        assert len(s) == len(self.dataset_path_list)
        for dataset_path, data_size in zip(self.dataset_path_list, self.data_size_list):
            s = hs.load(self.hdf5_dataset_path, dataset_path=dataset_path)
            title = os.path.basename(os.path.dirname(dataset_path))
            assert s.metadata.General.title == title
            assert s.data.shape == data_size[::-1]

    def test_load_with_dataset_path_several(self):
        dataset_path = self.dataset_path_list[0:2]
        s = hs.load(self.hdf5_dataset_path, dataset_path=dataset_path)
        assert len(s) == len(dataset_path)
        assert s[0].metadata.General.title in dataset_path[0]
        assert s[1].metadata.General.title in dataset_path[1]

    def test_wrong_dataset_path(self):
        with pytest.raises(IOError):
            hs.load(self.hdf5_dataset_path, dataset_path="a_wrong_name")
        with pytest.raises(IOError):
            hs.load(
                self.hdf5_dataset_path,
                dataset_path=[self.dataset_path_list[0], "a_wrong_name"],
            )


def test_minimal_save(tmp_path):
    signal = hs.signals.Signal1D([0, 1])
    signal.save(tmp_path / "testfile.emd")


def test_load_file(tmp_path):
    hdf5_dataset_path = tmp_path / "test_dataset.emd"
    f = h5py.File(hdf5_dataset_path, mode="w")
    f.attrs.create("version_major", 0)
    f.attrs.create("version_minor", 2)

    group_path_list = ["/exp/data_0/data", "/exp/data_1/data", "/calc/data_0/data"]

    for group_path in group_path_list:
        group = f.create_group(group_path)
        group.attrs.create("emd_group_type", 1)
        data = np.random.random((128, 128))
        group.create_dataset(name="data", data=data)
        group.create_dataset(name="dim1", data=range(128))
        group.create_dataset(name="dim2", data=range(128))

    f.close()

    s = hs.load(hdf5_dataset_path)
    assert len(s) == len(group_path_list)
    for _s, path in zip(s, group_path_list):
        assert _s.metadata.General.title in path


@pytest.mark.parametrize("lazy", (True, False))
def test_save_and_read(lazy, tmp_path):
    signal_ref = hs.signals.BaseSignal(np.arange(24).reshape((2, 3, 4)))
    signal_ref.metadata.General.title = test_title
    signal_ref.axes_manager[0].name = "x"
    signal_ref.axes_manager[1].name = "y"
    signal_ref.axes_manager[2].name = "z"
    signal_ref.axes_manager[0].scale = 2
    signal_ref.axes_manager[1].scale = 3
    signal_ref.axes_manager[2].scale = 4
    signal_ref.axes_manager[0].offset = 10
    signal_ref.axes_manager[1].offset = 20
    signal_ref.axes_manager[2].offset = 30
    signal_ref.axes_manager[0].units = "nm"
    signal_ref.axes_manager[1].units = "µm"
    signal_ref.axes_manager[2].units = "mm"
    signal_ref.original_metadata.add_dictionary({"user": user})
    signal_ref.original_metadata.add_dictionary({"microscope": microscope})
    signal_ref.original_metadata.add_dictionary({"sample": sample})
    signal_ref.original_metadata.add_dictionary({"comments": comments})

    signal_ref.save(tmp_path / "example_temp.emd", overwrite=True)
    signal = hs.load(tmp_path / "example_temp.emd", lazy=lazy)
    if lazy:
        signal.compute(close_file=True)
    om = signal.original_metadata.as_dictionary()
    np.testing.assert_equal(signal.data, signal_ref.data)
    np.testing.assert_equal(signal.axes_manager[0].name, "x")
    np.testing.assert_equal(signal.axes_manager[1].name, "y")
    np.testing.assert_equal(signal.axes_manager[2].name, "z")
    np.testing.assert_equal(signal.axes_manager[0].scale, 2)
    np.testing.assert_almost_equal(signal.axes_manager[1].scale, 3.0)
    np.testing.assert_almost_equal(signal.axes_manager[2].scale, 4.0)
    np.testing.assert_equal(signal.axes_manager[0].offset, 10)
    np.testing.assert_almost_equal(signal.axes_manager[1].offset, 20.0)
    np.testing.assert_almost_equal(signal.axes_manager[2].offset, 30.0)
    np.testing.assert_equal(signal.axes_manager[0].units, "nm")
    np.testing.assert_equal(signal.axes_manager[1].units, "µm")
    np.testing.assert_equal(signal.axes_manager[2].units, "mm")
    np.testing.assert_equal(signal.metadata.General.title, test_title)
    np.testing.assert_equal(om["user"], user)
    np.testing.assert_equal(om["microscope"], microscope)
    np.testing.assert_equal(om["sample"], sample)
    np.testing.assert_equal(om["comments"], comments)

    assert isinstance(signal, hs.signals.BaseSignal)


def test_chunking_saving_lazy(tmp_path):
    s = hs.signals.Signal2D(da.zeros((50, 100, 100))).as_lazy()
    s.data = s.data.rechunk([50, 25, 25])
    filename = tmp_path / "test_chunking_saving_lazy.emd"
    filename2 = tmp_path / "test_chunking_saving_lazy_chunks_True.emd"
    filename3 = tmp_path / "test_chunking_saving_lazy_chunks_specify.emd"
    s.save(filename)
    s1 = hs.load(filename, lazy=True)
    assert s.data.chunks == s1.data.chunks

    # with chunks=True, use h5py chunking
    s.save(filename2, chunks=True)
    s2 = hs.load(filename2, lazy=True)
    assert tuple([c[0] for c in s2.data.chunks]) == (13, 25, 13)
    s1.close_file()
    s2.close_file()

    # Specify chunks
    chunks = (50, 20, 20)
    s.save(filename3, chunks=chunks)
    s3 = hs.load(filename3, lazy=True)
    assert tuple([c[0] for c in s3.data.chunks]) == chunks