1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.
# The EMD format is a hdf5 standard proposed at Lawrence Berkeley
# National Lab (see https://emdatasets.com/ for more information).
# NOT to be confused with the FEI EMD format which was developed later.
import os
import tempfile
from pathlib import Path
import dask.array as da
import numpy as np
import pytest
h5py = pytest.importorskip("h5py", reason="h5py not installed")
hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
TEST_DATA_PATH = Path(__file__).parent / "data" / "emd"
# Reference data:
data_signal = np.arange(27).reshape((3, 3, 3)).T
data_image = np.arange(9).reshape((3, 3)).T
data_spectrum = np.arange(3).T
sig_metadata = {"a": 1, "b": 2}
user = {
"name": "John Doe",
"institution": "TestUniversity",
"department": "Microscopy",
"email": "johndoe@web.de",
}
microscope = {"name": "Titan", "voltage": "300kV"}
sample = {"material": "TiO2", "preparation": "FIB"}
comments = {"comment": "Test"}
test_title = "This is a test!"
@pytest.mark.parametrize("lazy", (True, False))
def test_signal_3d_loading(lazy):
signal = hs.load(TEST_DATA_PATH / "example_signal.emd", lazy=lazy)
if lazy:
signal.compute(close_file=True)
np.testing.assert_equal(signal.data, data_signal)
assert isinstance(signal, hs.signals.BaseSignal)
def test_image_2d_loading():
signal = hs.load(TEST_DATA_PATH / "example_image.emd")
np.testing.assert_equal(signal.data, data_image)
assert isinstance(signal, hs.signals.Signal2D)
def test_spectrum_1d_loading():
signal = hs.load(TEST_DATA_PATH / "example_spectrum.emd")
np.testing.assert_equal(signal.data, data_spectrum)
assert isinstance(signal, hs.signals.Signal1D)
def test_metadata():
signal = hs.load(TEST_DATA_PATH / "example_metadata.emd")
om = signal.original_metadata
np.testing.assert_equal(signal.data, data_image)
np.testing.assert_equal(signal.metadata.General.title, test_title)
np.testing.assert_equal(om.user.as_dictionary(), user)
np.testing.assert_equal(om.microscope.as_dictionary(), microscope)
np.testing.assert_equal(om.sample.as_dictionary(), sample)
np.testing.assert_equal(om.comments.as_dictionary(), comments)
assert isinstance(signal, hs.signals.Signal2D)
def test_metadata_with_bytes_string():
pytest.importorskip("natsort", minversion="5.1.0")
filename = TEST_DATA_PATH / "example_bytes_string_metadata.emd"
f = h5py.File(filename, "r")
dim1 = f["test_group"]["data_group"]["dim1"]
dim1_name = dim1.attrs["name"]
dim1_units = dim1.attrs["units"]
f.close()
assert isinstance(dim1_name, np.bytes_)
assert isinstance(dim1_units, np.bytes_)
_ = hs.load(TEST_DATA_PATH / filename)
def test_data_numpy_object_dtype():
filename = TEST_DATA_PATH / "example_object_dtype_data.emd"
signal = hs.load(filename)
np.testing.assert_equal(signal.data, np.array([["a, 2, test1", "a, 2, test1"]]))
def test_data_axis_length_1():
filename = TEST_DATA_PATH / "example_axis_len_1.emd"
signal = hs.load(filename)
assert signal.data.shape == (5, 1, 5)
class TestDatasetName:
def setup_method(self):
tmpdir = tempfile.TemporaryDirectory()
hdf5_dataset_path = os.path.join(tmpdir.name, "test_dataset.emd")
f = h5py.File(hdf5_dataset_path, mode="w")
f.attrs.create("version_major", 0)
f.attrs.create("version_minor", 2)
dataset_path_list = [
"/experimental/science_data_0/data",
"/experimental/science_data_1/data",
"/processed/science_data_0/data",
]
data_size_list = [(50, 50), (20, 10), (16, 32)]
for dataset_path, data_size in zip(dataset_path_list, data_size_list):
group = f.create_group(os.path.dirname(dataset_path))
group.attrs.create("emd_group_type", 1)
group.create_dataset(name="data", data=np.random.random(data_size))
group.create_dataset(name="dim1", data=range(data_size[0]))
group.create_dataset(name="dim2", data=range(data_size[1]))
f.close()
self.hdf5_dataset_path = hdf5_dataset_path
self.tmpdir = tmpdir
self.dataset_path_list = dataset_path_list
self.data_size_list = data_size_list
def teardown_method(self):
self.tmpdir.cleanup()
def test_load_with_dataset_path(self):
s = hs.load(self.hdf5_dataset_path)
assert len(s) == len(self.dataset_path_list)
for dataset_path, data_size in zip(self.dataset_path_list, self.data_size_list):
s = hs.load(self.hdf5_dataset_path, dataset_path=dataset_path)
title = os.path.basename(os.path.dirname(dataset_path))
assert s.metadata.General.title == title
assert s.data.shape == data_size[::-1]
def test_load_with_dataset_path_several(self):
dataset_path = self.dataset_path_list[0:2]
s = hs.load(self.hdf5_dataset_path, dataset_path=dataset_path)
assert len(s) == len(dataset_path)
assert s[0].metadata.General.title in dataset_path[0]
assert s[1].metadata.General.title in dataset_path[1]
def test_wrong_dataset_path(self):
with pytest.raises(IOError):
hs.load(self.hdf5_dataset_path, dataset_path="a_wrong_name")
with pytest.raises(IOError):
hs.load(
self.hdf5_dataset_path,
dataset_path=[self.dataset_path_list[0], "a_wrong_name"],
)
def test_minimal_save(tmp_path):
signal = hs.signals.Signal1D([0, 1])
signal.save(tmp_path / "testfile.emd")
def test_load_file(tmp_path):
hdf5_dataset_path = tmp_path / "test_dataset.emd"
f = h5py.File(hdf5_dataset_path, mode="w")
f.attrs.create("version_major", 0)
f.attrs.create("version_minor", 2)
group_path_list = ["/exp/data_0/data", "/exp/data_1/data", "/calc/data_0/data"]
for group_path in group_path_list:
group = f.create_group(group_path)
group.attrs.create("emd_group_type", 1)
data = np.random.random((128, 128))
group.create_dataset(name="data", data=data)
group.create_dataset(name="dim1", data=range(128))
group.create_dataset(name="dim2", data=range(128))
f.close()
s = hs.load(hdf5_dataset_path)
assert len(s) == len(group_path_list)
for _s, path in zip(s, group_path_list):
assert _s.metadata.General.title in path
@pytest.mark.parametrize("lazy", (True, False))
def test_save_and_read(lazy, tmp_path):
signal_ref = hs.signals.BaseSignal(np.arange(24).reshape((2, 3, 4)))
signal_ref.metadata.General.title = test_title
signal_ref.axes_manager[0].name = "x"
signal_ref.axes_manager[1].name = "y"
signal_ref.axes_manager[2].name = "z"
signal_ref.axes_manager[0].scale = 2
signal_ref.axes_manager[1].scale = 3
signal_ref.axes_manager[2].scale = 4
signal_ref.axes_manager[0].offset = 10
signal_ref.axes_manager[1].offset = 20
signal_ref.axes_manager[2].offset = 30
signal_ref.axes_manager[0].units = "nm"
signal_ref.axes_manager[1].units = "µm"
signal_ref.axes_manager[2].units = "mm"
signal_ref.original_metadata.add_dictionary({"user": user})
signal_ref.original_metadata.add_dictionary({"microscope": microscope})
signal_ref.original_metadata.add_dictionary({"sample": sample})
signal_ref.original_metadata.add_dictionary({"comments": comments})
signal_ref.save(tmp_path / "example_temp.emd", overwrite=True)
signal = hs.load(tmp_path / "example_temp.emd", lazy=lazy)
if lazy:
signal.compute(close_file=True)
om = signal.original_metadata.as_dictionary()
np.testing.assert_equal(signal.data, signal_ref.data)
np.testing.assert_equal(signal.axes_manager[0].name, "x")
np.testing.assert_equal(signal.axes_manager[1].name, "y")
np.testing.assert_equal(signal.axes_manager[2].name, "z")
np.testing.assert_equal(signal.axes_manager[0].scale, 2)
np.testing.assert_almost_equal(signal.axes_manager[1].scale, 3.0)
np.testing.assert_almost_equal(signal.axes_manager[2].scale, 4.0)
np.testing.assert_equal(signal.axes_manager[0].offset, 10)
np.testing.assert_almost_equal(signal.axes_manager[1].offset, 20.0)
np.testing.assert_almost_equal(signal.axes_manager[2].offset, 30.0)
np.testing.assert_equal(signal.axes_manager[0].units, "nm")
np.testing.assert_equal(signal.axes_manager[1].units, "µm")
np.testing.assert_equal(signal.axes_manager[2].units, "mm")
np.testing.assert_equal(signal.metadata.General.title, test_title)
np.testing.assert_equal(om["user"], user)
np.testing.assert_equal(om["microscope"], microscope)
np.testing.assert_equal(om["sample"], sample)
np.testing.assert_equal(om["comments"], comments)
assert isinstance(signal, hs.signals.BaseSignal)
def test_chunking_saving_lazy(tmp_path):
s = hs.signals.Signal2D(da.zeros((50, 100, 100))).as_lazy()
s.data = s.data.rechunk([50, 25, 25])
filename = tmp_path / "test_chunking_saving_lazy.emd"
filename2 = tmp_path / "test_chunking_saving_lazy_chunks_True.emd"
filename3 = tmp_path / "test_chunking_saving_lazy_chunks_specify.emd"
s.save(filename)
s1 = hs.load(filename, lazy=True)
assert s.data.chunks == s1.data.chunks
# with chunks=True, use h5py chunking
s.save(filename2, chunks=True)
s2 = hs.load(filename2, lazy=True)
assert tuple([c[0] for c in s2.data.chunks]) == (13, 25, 13)
s1.close_file()
s2.close_file()
# Specify chunks
chunks = (50, 20, 20)
s.save(filename3, chunks=chunks)
s3 = hs.load(filename3, lazy=True)
assert tuple([c[0] for c in s3.data.chunks]) == chunks
|