1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
|
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.
# The EMD format is a hdf5 standard proposed at Lawrence Berkeley
# National Lab (see https://emdatasets.com/ for more information).
# NOT to be confused with the FEI EMD format which was developed later.
import gc
import logging
import shutil
from datetime import datetime
from pathlib import Path
import numpy as np
import pytest
from dateutil import tz
from rsciio.utils.tests import assert_deep_almost_equal
hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
pytest.importorskip("sparse")
TEST_DATA_PATH = Path(__file__).parent / "data" / "emd"
def _generate_parameters():
parameters = []
for lazy in [True, False]:
for sum_EDS_detectors in [True, False]:
parameters.append([lazy, sum_EDS_detectors])
return parameters
class TestFeiEMD:
fei_files_path = TEST_DATA_PATH / "fei_emd_files"
@classmethod
def setup_class(cls):
import zipfile
zipf = TEST_DATA_PATH / "fei_emd_files.zip"
with zipfile.ZipFile(zipf, "r") as zipped:
zipped.extractall(cls.fei_files_path)
@classmethod
def teardown_class(cls):
gc.collect()
shutil.rmtree(cls.fei_files_path)
@pytest.mark.parametrize("lazy", (True, False))
def test_fei_emd_image(self, lazy):
stage = {
"tilt_alpha": 0.006,
"tilt_beta": 0.000,
"x": -0.000009,
"y": 0.000144,
"z": 0.000029,
}
md = {
"Acquisition_instrument": {
"TEM": {
"beam_energy": 200.0,
"camera_length": 98.0,
"magnification": 40000.0,
"microscope": "Talos",
"Stage": stage,
}
},
"General": {
"original_filename": "fei_emd_image.emd",
"date": "2017-03-06",
"time": "09:56:41",
"time_zone": "BST",
"title": "HAADF",
"FileIO": {
"0": {
"operation": "load",
"hyperspy_version": hs.__version__,
"io_plugin": "rsciio.emd",
}
},
},
"Signal": {"signal_type": ""},
"_HyperSpy": {
"Folding": {
"original_axes_manager": None,
"original_shape": None,
"signal_unfolded": False,
"unfolded": False,
}
},
}
# Update time and time_zone to local ones
md["General"]["time_zone"] = tz.tzlocal().tzname(datetime.today())
dt = datetime.fromtimestamp(1488794201, tz=tz.tzutc())
date, time = dt.astimezone(tz.tzlocal()).isoformat().split("+")[0].split("T")
md["General"]["date"] = date
md["General"]["time"] = time
signal = hs.load(self.fei_files_path / "fei_emd_image.emd", lazy=lazy)
# delete timestamp from metadata since it's runtime dependent
del signal.metadata.General.FileIO.Number_0.timestamp
if lazy:
assert signal._lazy
signal.compute(close_file=True)
fei_image = np.load(self.fei_files_path / "fei_emd_image.npy")
assert signal.axes_manager[0].name == "x"
assert signal.axes_manager[0].units == "µm"
assert signal.axes_manager[0].is_binned is False
np.testing.assert_allclose(signal.axes_manager[0].scale, 0.00530241, rtol=1e-5)
assert signal.axes_manager[1].name == "y"
assert signal.axes_manager[1].units == "µm"
assert signal.axes_manager[1].is_binned is False
np.testing.assert_allclose(signal.axes_manager[1].scale, 0.00530241, rtol=1e-5)
np.testing.assert_allclose(signal.data, fei_image)
assert_deep_almost_equal(signal.metadata.as_dictionary(), md)
assert isinstance(signal, hs.signals.Signal2D)
@pytest.mark.parametrize("lazy", (True, False))
def test_fei_emd_spectrum(self, lazy):
signal = hs.load(self.fei_files_path / "fei_emd_spectrum.emd", lazy=lazy)
if lazy:
assert signal._lazy
signal.compute(close_file=True)
fei_spectrum = np.load(self.fei_files_path / "fei_emd_spectrum.npy")
np.testing.assert_equal(signal.data, fei_spectrum)
assert isinstance(signal, hs.signals.Signal1D)
@pytest.mark.parametrize("lazy", (True, False))
def test_fei_emd_si(self, lazy):
signal = hs.load(self.fei_files_path / "fei_emd_si.emd", lazy=lazy)
if lazy:
assert signal[1]._lazy
signal[1].compute(close_file=True)
fei_si = np.load(self.fei_files_path / "fei_emd_si.npy")
np.testing.assert_equal(signal[1].data, fei_si)
assert isinstance(signal[1], hs.signals.Signal1D)
@pytest.mark.parametrize("lazy", (True, False))
def test_fei_emd_si_non_square_10frames(self, lazy):
s = hs.load(
self.fei_files_path / "fei_SI_SuperX-HAADF_10frames_10x50.emd",
lazy=lazy,
)
signal = s[1]
if lazy:
assert signal._lazy
signal.compute(close_file=True)
assert signal.metadata.Signal.signal_type == "EDS_TEM"
assert isinstance(signal, hs.signals.Signal1D)
assert signal.axes_manager[0].name == "x"
assert signal.axes_manager[0].size == 10
assert signal.axes_manager[0].units == "nm"
np.testing.assert_allclose(signal.axes_manager[0].scale, 1.234009, atol=1e-5)
assert signal.axes_manager[1].name == "y"
assert signal.axes_manager[1].size == 50
assert signal.axes_manager[1].units == "nm"
np.testing.assert_allclose(signal.axes_manager[1].scale, 1.234009, atol=1e-5)
assert signal.axes_manager[2].name == "X-ray energy"
assert signal.axes_manager[2].size == 4096
assert signal.axes_manager[2].units == "keV"
np.testing.assert_allclose(signal.axes_manager[2].scale, 0.005, atol=1e-5)
signal0 = s[0]
if lazy:
assert signal0._lazy
signal0.compute(close_file=True)
assert isinstance(signal0, hs.signals.Signal2D)
assert signal0.axes_manager[0].name == "x"
assert signal0.axes_manager[0].size == 10
assert signal0.axes_manager[0].units == "nm"
np.testing.assert_allclose(signal0.axes_manager[0].scale, 1.234009, atol=1e-5)
assert signal0.axes_manager[1].name == "y"
assert signal0.axes_manager[1].size == 50
assert signal0.axes_manager[1].units == "nm"
s = hs.load(
self.fei_files_path / "fei_SI_SuperX-HAADF_10frames_10x50.emd",
lazy=lazy,
load_SI_image_stack=True,
)
signal = s[1]
if lazy:
assert signal._lazy
signal.compute(close_file=True)
assert signal.metadata.Signal.signal_type == "EDS_TEM"
assert isinstance(signal, hs.signals.Signal1D)
assert signal.axes_manager[0].name == "x"
assert signal.axes_manager[0].size == 10
assert signal.axes_manager[0].units == "nm"
np.testing.assert_allclose(signal.axes_manager[0].scale, 1.234009, atol=1e-5)
assert signal.axes_manager[1].name == "y"
assert signal.axes_manager[1].size == 50
assert signal.axes_manager[1].units == "nm"
np.testing.assert_allclose(signal.axes_manager[1].scale, 1.234009, atol=1e-5)
assert signal.axes_manager[2].name == "X-ray energy"
assert signal.axes_manager[2].size == 4096
assert signal.axes_manager[2].units == "keV"
np.testing.assert_allclose(signal.axes_manager[2].scale, 0.005, atol=1e-5)
signal0 = s[0]
if lazy:
assert signal0._lazy
signal0.compute(close_file=True)
assert isinstance(signal0, hs.signals.Signal2D)
assert signal0.axes_manager[0].name == "Time"
assert signal0.axes_manager[0].size == 10
assert signal0.axes_manager[0].units == "s"
assert signal0.axes_manager[1].name == "x"
assert signal0.axes_manager[1].size == 10
assert signal0.axes_manager[1].units == "nm"
np.testing.assert_allclose(signal0.axes_manager[1].scale, 1.234009, atol=1e-5)
assert signal0.axes_manager[2].name == "y"
assert signal0.axes_manager[2].size == 50
assert signal0.axes_manager[2].units == "nm"
s = hs.load(
self.fei_files_path / "fei_SI_SuperX-HAADF_10frames_10x50.emd",
sum_frames=False,
SI_dtype=np.uint8,
rebin_energy=256,
lazy=lazy,
)
signal = s[1]
if lazy:
assert signal._lazy
signal.compute(close_file=True)
assert signal.metadata.Signal.signal_type == "EDS_TEM"
assert isinstance(signal, hs.signals.Signal1D)
assert signal.axes_manager.navigation_shape == (10, 50, 10)
assert signal.axes_manager[0].name == "x"
assert signal.axes_manager[0].size == 10
assert signal.axes_manager[0].units == "nm"
np.testing.assert_allclose(signal.axes_manager[0].scale, 1.234009, atol=1e-5)
assert signal.axes_manager[1].name == "y"
assert signal.axes_manager[1].size == 50
assert signal.axes_manager[1].units == "nm"
np.testing.assert_allclose(signal.axes_manager[1].scale, 1.234009, atol=1e-5)
assert signal.axes_manager[2].name == "Time"
assert signal.axes_manager[2].size == 10
assert signal.axes_manager[2].units == "s"
np.testing.assert_allclose(signal.axes_manager[2].scale, 0.76800, atol=1e-5)
assert signal.axes_manager[3].name == "X-ray energy"
assert signal.axes_manager[3].size == 16
assert signal.axes_manager[3].units == "keV"
np.testing.assert_allclose(signal.axes_manager[3].scale, 1.28, atol=1e-5)
s = hs.load(
self.fei_files_path / "fei_SI_SuperX-HAADF_10frames_10x50.emd",
sum_frames=False,
last_frame=5,
SI_dtype=np.uint8,
rebin_energy=256,
lazy=lazy,
)
signal = s[1]
if lazy:
assert signal._lazy
signal.compute(close_file=True)
assert signal.metadata.Signal.signal_type == "EDS_TEM"
assert isinstance(signal, hs.signals.Signal1D)
assert signal.axes_manager.navigation_shape == (10, 50, 5)
assert signal.axes_manager[0].name == "x"
assert signal.axes_manager[0].size == 10
assert signal.axes_manager[0].units == "nm"
np.testing.assert_allclose(signal.axes_manager[0].scale, 1.234009, atol=1e-5)
assert signal.axes_manager[1].name == "y"
assert signal.axes_manager[1].size == 50
assert signal.axes_manager[1].units == "nm"
np.testing.assert_allclose(signal.axes_manager[1].scale, 1.234009, atol=1e-5)
assert signal.axes_manager[2].name == "Time"
assert signal.axes_manager[2].size == 5
assert signal.axes_manager[2].units == "s"
np.testing.assert_allclose(signal.axes_manager[2].scale, 0.76800, atol=1e-5)
assert signal.axes_manager[3].name == "X-ray energy"
assert signal.axes_manager[3].size == 16
assert signal.axes_manager[3].units == "keV"
np.testing.assert_allclose(signal.axes_manager[3].scale, 1.28, atol=1e-5)
s = hs.load(
self.fei_files_path / "fei_SI_SuperX-HAADF_10frames_10x50.emd",
sum_frames=False,
first_frame=4,
SI_dtype=np.uint8,
rebin_energy=256,
lazy=lazy,
)
signal = s[1]
if lazy:
assert signal._lazy
signal.compute(close_file=True)
assert signal.metadata.Signal.signal_type == "EDS_TEM"
assert isinstance(signal, hs.signals.Signal1D)
assert signal.axes_manager.navigation_shape == (10, 50, 6)
assert signal.axes_manager[0].name == "x"
assert signal.axes_manager[0].size == 10
assert signal.axes_manager[0].units == "nm"
np.testing.assert_allclose(signal.axes_manager[0].scale, 1.234009, atol=1e-5)
assert signal.axes_manager[1].name == "y"
assert signal.axes_manager[1].size == 50
assert signal.axes_manager[1].units == "nm"
np.testing.assert_allclose(signal.axes_manager[1].scale, 1.234009, atol=1e-5)
assert signal.axes_manager[2].name == "Time"
assert signal.axes_manager[2].size == 6
assert signal.axes_manager[2].units == "s"
np.testing.assert_allclose(signal.axes_manager[2].scale, 0.76800, atol=1e-5)
assert signal.axes_manager[3].name == "X-ray energy"
assert signal.axes_manager[3].size == 16
assert signal.axes_manager[3].units == "keV"
np.testing.assert_allclose(signal.axes_manager[3].scale, 1.28, atol=1e-5)
@pytest.mark.parametrize("lazy", (True, False))
def test_fei_emd_si_non_square_20frames(self, lazy):
s = hs.load(
self.fei_files_path / "fei_SI_SuperX-HAADF_20frames_10x50.emd",
lazy=lazy,
)
signal = s[1]
if lazy:
assert signal._lazy
signal.compute(close_file=True)
assert signal.metadata.Signal.signal_type == "EDS_TEM"
assert isinstance(signal, hs.signals.Signal1D)
assert signal.axes_manager[0].name == "x"
assert signal.axes_manager[0].size == 10
assert signal.axes_manager[0].units == "nm"
np.testing.assert_allclose(signal.axes_manager[0].scale, 1.234009, atol=1e-5)
assert signal.axes_manager[1].name == "y"
assert signal.axes_manager[1].size == 50
assert signal.axes_manager[1].units == "nm"
np.testing.assert_allclose(signal.axes_manager[1].scale, 1.234009, atol=1e-5)
assert signal.axes_manager[2].name == "X-ray energy"
assert signal.axes_manager[2].size == 4096
assert signal.axes_manager[2].units == "keV"
np.testing.assert_allclose(signal.axes_manager[2].scale, 0.005, atol=1e-5)
@pytest.mark.parametrize("lazy", (True, False))
def test_fei_emd_si_non_square_20frames_2eV(self, lazy):
s = hs.load(
self.fei_files_path / "fei_SI_SuperX-HAADF_20frames_10x50_2ev.emd",
lazy=lazy,
)
signal = s[1]
if lazy:
assert signal._lazy
signal.compute(close_file=True)
assert signal.metadata.Signal.signal_type == "EDS_TEM"
assert isinstance(signal, hs.signals.Signal1D)
assert signal.axes_manager[0].name == "x"
assert signal.axes_manager[0].size == 10
assert signal.axes_manager[0].units == "nm"
np.testing.assert_allclose(signal.axes_manager[0].scale, 1.234009, atol=1e-5)
assert signal.axes_manager[1].name == "y"
assert signal.axes_manager[1].size == 50
assert signal.axes_manager[1].units == "nm"
np.testing.assert_allclose(signal.axes_manager[1].scale, 1.234009, atol=1e-5)
assert signal.axes_manager[2].name == "X-ray energy"
assert signal.axes_manager[2].size == 4096
assert signal.axes_manager[2].units == "keV"
np.testing.assert_allclose(signal.axes_manager[2].scale, 0.002, atol=1e-5)
@pytest.mark.parametrize("lazy", (True, False))
def test_fei_emd_si_frame_range(self, lazy):
signal = hs.load(
self.fei_files_path / "fei_emd_si.emd",
first_frame=2,
last_frame=4,
lazy=lazy,
)
fei_si = np.load(self.fei_files_path / "fei_emd_si_frame.npy")
if lazy:
assert signal[1]._lazy
signal[1].compute(close_file=True)
np.testing.assert_equal(signal[1].data, fei_si)
assert isinstance(signal[1], hs.signals.Signal1D)
@pytest.mark.parametrize(["lazy", "sum_EDS_detectors"], _generate_parameters())
def test_fei_si_4detectors(self, lazy, sum_EDS_detectors):
fname = self.fei_files_path / "fei_SI_EDS-HAADF-4detectors_2frames.emd"
signal = hs.load(fname, sum_EDS_detectors=sum_EDS_detectors, lazy=lazy)
if lazy:
assert signal[1]._lazy
signal[1].compute(close_file=True)
length = 6
if not sum_EDS_detectors:
length += 3
assert len(signal) == length
# TODO: add parsing azimuth_angle
@pytest.mark.parametrize("lazy", (False, True))
@pytest.mark.parametrize("sum_frames", (False, True))
def test_fei_si_4detectors_compare(self, lazy, sum_frames):
fname = self.fei_files_path / "fei_SI_EDS-HAADF-4detectors_2frames.emd"
kwargs = dict(lazy=lazy, sum_frames=sum_frames)
s_sum_EDS = hs.load(fname, sum_EDS_detectors=True, **kwargs)[-1]
s = hs.load(fname, sum_EDS_detectors=False, **kwargs)[-4:]
if lazy:
s_sum_EDS.compute()
for s_ in s:
s_.compute()
s2 = hs.stack(s, new_axis_name="detector").sum("detector")
np.testing.assert_allclose(s[-1].data.sum(), 865236)
np.testing.assert_allclose(s[-2].data.sum(), 913682)
np.testing.assert_allclose(s[-3].data.sum(), 867647)
np.testing.assert_allclose(s[-4].data.sum(), 916174)
np.testing.assert_allclose(s2.data.sum(), 3562739)
np.testing.assert_allclose(s2.data, s_sum_EDS.data)
def test_fei_emd_ceta_camera(self):
signal = hs.load(self.fei_files_path / "1532 Camera Ceta.emd")
np.testing.assert_allclose(signal.data, np.zeros((64, 64)))
assert isinstance(signal, hs.signals.Signal2D)
date, time = self._convert_datetime(1512055942.914275).split("T")
assert signal.metadata.General.date == date
assert signal.metadata.General.time == time
assert signal.metadata.General.time_zone == self._get_local_time_zone()
signal = hs.load(self.fei_files_path / "1854 Camera Ceta.emd")
np.testing.assert_allclose(signal.data, np.zeros((64, 64)))
assert isinstance(signal, hs.signals.Signal2D)
def _convert_datetime(self, unix_time):
# Since we don't know the actual time zone of where the data have been
# acquired, we convert the datetime to the local time for convenience
dt = datetime.fromtimestamp(float(unix_time), tz=tz.tzutc())
return dt.astimezone(tz.tzlocal()).isoformat().split("+")[0]
def _get_local_time_zone(self):
return tz.tzlocal().tzname(datetime.today())
def time_loading_frame(self):
# Run this function to check the loading time when loading EDS data
import time
frame_number = 100
point_measurement = 15
frame_offsets = np.arange(0, point_measurement * frame_number, frame_number)
time_data = np.zeros_like(frame_offsets)
path = Path("path to large dataset")
for i, frame_offset in enumerate(frame_offsets):
print(frame_offset + frame_number)
t0 = time.time()
hs.load(
path / "large dataset.emd",
first_frame=frame_offset,
last_frame=frame_offset + frame_number,
)
t1 = time.time()
time_data[i] = t1 - t0
import matplotlib.pyplot as plt
plt.plot(frame_offsets, time_data)
plt.xlabel("Frame offset")
plt.xlabel("Loading time (s)")
def test_fei_complex_loading():
signal = hs.load(TEST_DATA_PATH / "fei_example_complex_fft.emd")
assert isinstance(signal, hs.signals.ComplexSignal2D)
def test_fei_complex_loading_lazy():
signal = hs.load(TEST_DATA_PATH / "fei_example_complex_fft.emd", lazy=True)
assert isinstance(signal, hs.signals.ComplexSignal2D)
def test_fei_no_frametime():
signal = hs.load(TEST_DATA_PATH / "fei_example_tem_stack.emd")
assert isinstance(signal, hs.signals.Signal2D)
assert signal.data.shape == (2, 3, 3)
assert signal.axes_manager["Time"].scale == 0.8
def test_fei_dpc_loading():
signals = hs.load(TEST_DATA_PATH / "fei_example_dpc_titles.emd")
assert signals[0].metadata.General.title == "B-D"
assert signals[1].metadata.General.title == "DPC"
assert signals[2].metadata.General.title == "iDPC"
assert signals[3].metadata.General.title == "DF4-C"
assert signals[4].metadata.General.title == "DF4-B"
assert signals[5].metadata.General.title == "DF4-A"
assert signals[6].metadata.General.title == "A-C"
assert signals[7].metadata.General.title == "DF4-D"
assert signals[8].metadata.General.title == "Filtered iDPC"
assert isinstance(signals[0], hs.signals.Signal2D)
assert isinstance(signals[1], hs.signals.ComplexSignal2D)
assert isinstance(signals[2], hs.signals.Signal2D)
assert isinstance(signals[3], hs.signals.Signal2D)
assert isinstance(signals[4], hs.signals.Signal2D)
assert isinstance(signals[5], hs.signals.Signal2D)
assert isinstance(signals[6], hs.signals.Signal2D)
assert isinstance(signals[7], hs.signals.Signal2D)
assert isinstance(signals[8], hs.signals.Signal2D)
@pytest.mark.parametrize("fname", ["FFTComplexEven.emd", "FFTComplexOdd.emd"])
def test_velox_fft_odd_number(fname):
s = hs.load(TEST_DATA_PATH / fname)
assert len(s) == 2
shape = (36, 70) if fname == "FFTComplexEven.emd" else (32, 64)
assert s[0].axes_manager.signal_shape == shape
assert np.issubdtype(s[0].data.dtype, np.complex64)
assert s[1].axes_manager.signal_shape == (128, 128)
assert np.issubdtype(s[1].data.dtype, float)
class TestVeloxEMDv11:
fei_files_path = TEST_DATA_PATH / "velox_emd_version11"
@classmethod
def setup_class(cls):
import zipfile
zipf = TEST_DATA_PATH / "velox_emd_version11.zip"
with zipfile.ZipFile(zipf, "r") as zipped:
zipped.extractall(cls.fei_files_path)
@classmethod
def teardown_class(cls):
gc.collect()
shutil.rmtree(cls.fei_files_path)
@pytest.mark.parametrize("lazy", (True, False))
def test_spectrum_images(self, lazy):
s = hs.load(self.fei_files_path / "Test SI 16x16 215 kx.emd", lazy=lazy)
assert s[-1].metadata.Sample.elements == ["C", "O", "Ca", "Cu"]
assert len(s) == 10
for i, v in enumerate(["C", "Ca", "O", "Cu", "HAADF", "EDS"]):
assert s[i + 4].metadata.General.title == v
assert s[-1].data.shape == (16, 16, 4096)
def test_prune_data(self, caplog):
with caplog.at_level(logging.WARNING):
_ = hs.load(self.fei_files_path / "Test SI 16x16 ReducedData 215 kx.emd")
assert "No spectrum stream is present" in caplog.text
|