File: test_image.py

package info (click to toggle)
python-rosettasciio 0.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,644 kB
  • sloc: python: 36,638; xml: 2,582; makefile: 20; ansic: 4
file content (314 lines) | stat: -rw-r--r-- 11,152 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.

import importlib
from pathlib import Path

import numpy as np
import pytest
from packaging.version import Version

imageio = pytest.importorskip("imageio")

from rsciio.image import file_writer  # noqa: E402

testfile_dir = (Path(__file__).parent / "data" / "image").resolve()


@pytest.mark.skipif(
    Version(imageio.__version__) < Version("2.23"),
    reason="needs imageio >=2.23",
)
@pytest.mark.parametrize(("dtype"), ["uint8", "int32", bool])
@pytest.mark.parametrize(("ext"), ["png", "bmp", "gif", "jpg"])
def test_save_load_cycle_grayscale(dtype, ext, tmp_path):
    hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
    s = hs.signals.Signal2D(np.arange(128 * 128).reshape(128, 128).astype(dtype))

    if dtype == "int32" and ext in ["bmp", "jpg"]:
        # BMP and JPG does not support uint32.
        return
    print(f"Saving-loading cycle for the extension `{ext}` with dtype `{dtype}`")
    filename = tmp_path / f"test_image.{ext}"
    s.save(filename)
    hs.load(filename)


@pytest.mark.parametrize(("color"), ["rgb8", "rgba8"])
@pytest.mark.parametrize(("ext"), ["png", "bmp", "gif", "jpeg"])
def test_save_load_cycle_color(color, ext, tmp_path):
    hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
    dim = 4 if "rgba" in color else 3
    dtype = "uint8" if "8" in color else "uint16"
    if dim == 4 and ext == "jpeg":
        # JPEG does not support alpha channel.
        return
    print("color:", color, "; dim:", dim, "; dtype:", dtype)
    s = hs.signals.Signal1D(
        np.arange(128 * 128 * dim).reshape(128, 128, dim).astype(dtype)
    )
    s.change_dtype(color)

    print("Saving-loading cycle for the extension:", ext)
    filename = tmp_path / f"test_image.{ext}"
    s.save(filename)
    hs.load(filename)


@pytest.mark.skipif(
    Version(imageio.__version__) < Version("2.23"),
    reason="needs imageio >=2.23",
)
@pytest.mark.parametrize(("dtype"), ["uint8", "int32"])
@pytest.mark.parametrize(("ext"), ["png", "bmp", "gif", "jpg"])
def test_save_load_cycle_kwds(dtype, ext, tmp_path):
    hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
    s = hs.signals.Signal2D(np.arange(128 * 128).reshape(128, 128).astype(dtype))

    if dtype == "int32" and ext in ["bmp", "jpg"]:
        # BMP and JPG does not support uint32.
        return

    print(f"Saving-loading cycle for the extension `{ext}` with dtype `{dtype}`")
    filename = tmp_path / f"test_image.{ext}"
    if ext == "png":
        kwds = {"optimize": True}
    elif ext == "jpg":
        kwds = {"quality": 100, "optimize": True}
    elif ext == "gif":
        kwds = {"subrectangles": "True", "palettesize": 128}
    else:
        kwds = {}
    s.save(filename, **kwds)
    hs.load(filename, pilmode="L", as_grey=True)


@pytest.mark.skipif(
    Version(imageio.__version__) < Version("2.23"),
    reason="needs imageio >=2.23",
)
@pytest.mark.parametrize(("ext"), ["png", "bmp", "gif", "jpg"])
def test_export_scalebar(ext, tmp_path):
    hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
    pytest.importorskip("matplotlib_scalebar")
    # Use np.uint8 to be able to save as BMP
    pixels = 64
    data = np.arange(pixels**2).reshape((pixels, pixels)).astype(np.uint8)
    s = hs.signals.Signal2D(data)
    s.axes_manager[0].units = "nm"
    s.axes_manager[1].units = "nm"

    filename = tmp_path / f"test_scalebar_export.{ext}"
    if ext in ["bmp", "gif"]:
        with pytest.raises(ValueError):
            s.save(filename, scalebar=True)
        with pytest.raises(ValueError):
            s.save(filename, output_size=512)
        s.save(filename)
    else:
        s.save(filename, scalebar=True)
    s_reload = hs.load(filename)
    assert s.data.shape == s_reload.data.shape


@pytest.mark.parametrize(("units"), ["1/nm", "1 / nm", "1 / nanometer", "1/nanometer"])
def test_export_scalebar_reciprocal(tmp_path, units):
    hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
    pixels = 512
    s = hs.signals.Signal2D(
        np.arange(pixels**2).reshape((pixels, pixels)).astype("int32")
    )
    for axis in s.axes_manager.signal_axes:
        axis.units = units
        axis.scale = 0.1

    filename = tmp_path / "test_scalebar_export.png"
    s.save(filename, scalebar=True, scalebar_kwds={"location": "lower right"})
    s_reload = hs.load(filename)
    assert s.data.shape == s_reload.data.shape


def test_export_scalebar_undefined_units(tmp_path):
    hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
    pixels = 512
    s = hs.signals.Signal2D(
        np.arange(pixels**2).reshape((pixels, pixels)).astype("int32")
    )

    filename = tmp_path / "test_scalebar_export.png"
    s.save(filename, scalebar=True, scalebar_kwds={"location": "lower right"})
    s_reload = hs.load(filename)
    assert s.data.shape == s_reload.data.shape


def test_non_uniform(tmp_path):
    hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
    pixels = 16
    s = hs.signals.Signal2D(np.arange(pixels**2).reshape((pixels, pixels)))
    s.axes_manager[0].convert_to_non_uniform_axis()

    filename = tmp_path / "test_export_size.jpg"
    with pytest.raises(TypeError):
        s.save(filename)


def test_export_scalebar_different_scale_units(tmp_path):
    hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
    pytest.importorskip("matplotlib_scalebar")
    pixels = 16
    s = hs.signals.Signal2D(np.arange(pixels**2).reshape((pixels, pixels)))
    s.axes_manager[0].scale = 2

    filename = tmp_path / "test_export_size.jpg"
    with pytest.raises(ValueError):
        s.save(filename, scalebar=True)

    s = hs.signals.Signal2D(np.arange(pixels**2).reshape((pixels, pixels)))
    s.axes_manager[0].units = "nm"

    filename = tmp_path / "test_export_size.jpg"
    with pytest.raises(ValueError):
        s.save(filename, scalebar=True)


@pytest.mark.parametrize("output_size", (512, [512, 512]))
def test_export_output_size(output_size, tmp_path):
    hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
    pixels = 16
    s = hs.signals.Signal2D(np.arange(pixels**2).reshape((pixels, pixels)))

    fname = tmp_path / "test_export_size.jpg"
    s.save(fname, scalebar=True, output_size=output_size)
    s_reload = hs.load(fname)
    assert s_reload.data.shape == (512, 512)


@pytest.mark.parametrize("scalebar", [True, False])
@pytest.mark.parametrize("output_size", (None, 512, (512, 512)))
def test_export_output_size_non_square(output_size, tmp_path, scalebar):
    hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
    pixels = (8, 16)
    s = hs.signals.Signal2D(
        np.arange(np.multiply(*pixels), dtype=np.uint8).reshape(pixels)
    )

    fname = tmp_path / "test_export_size_non_square.jpg"
    s.save(fname, output_size=output_size, scalebar=scalebar)
    s_reload = hs.load(fname)

    if output_size is None:
        output_size = (8, 16)
    if isinstance(output_size, int):
        output_size = (output_size * np.divide(*pixels), output_size)

    assert s_reload.data.shape == output_size


@pytest.mark.parametrize("output_size", (None, 512))
@pytest.mark.parametrize("aspect", (1, 0.5))
def test_export_output_size_aspect(aspect, output_size, tmp_path):
    hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
    pixels = (256, 256)
    s = hs.signals.Signal2D(np.arange(np.multiply(*pixels)).reshape(pixels))

    fname = tmp_path / "test_export_size_non_square_aspect.jpg"
    s.save(
        fname, scalebar=True, output_size=output_size, imshow_kwds=dict(aspect=aspect)
    )
    s_reload = hs.load(fname)

    if output_size is None:
        output_size = s.data.shape[0]
    assert s_reload.data.shape == (output_size * aspect, output_size)


def test_save_image_navigation(tmp_path):
    hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
    pixels = 16
    s = hs.signals.Signal2D(
        np.arange(pixels**2).reshape((pixels, pixels)).astype("int32")
    )

    fname = tmp_path / "test_save_image_navigation.png"
    s.T.save(fname, scalebar=True)


def test_error_library_no_installed(tmp_path):
    axis = {
        "_type": "UniformDataAxis",
        "name": None,
        "units": None,
        "navigate": False,
        "is_binned": False,
        "size": 128,
        "scale": 1.0,
        "offset": 0.0,
    }
    signal_dict = {"data": np.arange(128 * 128).reshape(128, 128), "axes": [axis, axis]}

    matplotlib = importlib.util.find_spec("matplotlib")
    if matplotlib is None:
        # When matplotlib is not installed, raises an error to inform user
        # that matplotlib is necessary
        with pytest.raises(ValueError):
            file_writer(tmp_path / "test_image_error.jpg", signal_dict, output_size=64)

        with pytest.raises(ValueError):
            file_writer(
                tmp_path / "test_image_error.jpg", signal_dict, imshow_kwds={"a": "b"}
            )


def test_renishaw_wire():
    hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
    s = hs.load(testfile_dir / "renishaw_wire.jpg")
    assert s.data.shape == (480, 752)
    for axis, scale, offset, name in zip(
        s.axes_manager.signal_axes,
        [2.42207446, 2.503827],
        [19105.5, -6814.538],
        ["y", "x"],
    ):
        np.testing.assert_allclose(axis.scale, scale)
        np.testing.assert_allclose(axis.offset, offset)
        axis.name == name
        axis.units == "µm"


def test_export_output_size_iterable_length_1(tmp_path):
    hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
    pixels = (256, 256)
    s = hs.signals.Signal2D(np.arange(np.multiply(*pixels)).reshape(pixels))

    fname = tmp_path / "test_export_output_size_iterable_length_1.jpg"
    with pytest.raises(ValueError):
        s.save(fname, output_size=(256,))


def test_missing_exif_tags():
    hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
    import traits.api as t

    s = hs.load(testfile_dir / "jpg_no_exif_tags.jpg")

    assert s.data.shape == (182, 255)
    assert s.axes_manager.signal_shape == (255, 182)
    for axis in s.axes_manager.signal_axes:
        assert axis.scale == 1
        assert axis.offset == 0
        assert axis.units == t.Undefined