1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
|
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.
import gc
import zipfile
from pathlib import Path
import numpy as np
import pytest
hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
def teardown_module(module):
"""
Run a garbage collection cycle at the end of the test of this module
to avoid any memory issue when continuing running the test suite.
"""
gc.collect()
TESTS_FILE_PATH = Path(__file__).resolve().parent / "data" / "jeol"
TESTS_FILE_PATH2 = TESTS_FILE_PATH / "InvalidFrame"
TEST_FILES = [
"rawdata.ASW",
"View000_0000000.img",
"View000_0000001.map",
"View000_0000002.map",
"View000_0000003.map",
"View000_0000004.map",
"View000_0000005.map",
"View000_0000006.pts",
]
TEST_FILES2 = [
"dummy2.ASW",
"Dummy-Data_0000000.img",
"Dummy-Data_0000001.map",
"Dummy-Data_0000002.map",
"Dummy-Data_0000003.map",
"Dummy-Data_0000004.map",
"Dummy-Data_0000005.map",
"Dummy-Data_0000006.map",
"Dummy-Data_0000007.pts",
"Dummy-Data_0000008.apb",
"Dummy-Data_0000009.map",
"Dummy-Data_0000010.map",
"Dummy-Data_0000011.map",
"Dummy-Data_0000012.map",
"Dummy-Data_0000013.map",
"Dummy-Data_0000014.map",
"Dummy-Data_0000015.pts",
"Dummy-Data_0000016.apb",
"Dummy-Data_0000017.map",
"Dummy-Data_0000018.map",
"Dummy-Data_0000019.map",
"Dummy-Data_0000020.map",
"Dummy-Data_0000021.map",
"Dummy-Data_0000022.map",
"Dummy-Data_0000023.pts",
"Dummy-Data_0000024.APB",
]
def test_load_project():
pytest.importorskip("numba")
# test load all elements of the project rawdata.ASW
filename = TESTS_FILE_PATH / TEST_FILES[0]
s = hs.load(filename, reader="JEOL")
# first file is always a 16bit image of the work area
assert s[0].data.dtype == np.uint8
assert s[0].data.shape == (512, 512)
assert s[0].axes_manager.signal_dimension == 2
assert s[0].axes_manager[0].units == "µm"
assert s[0].axes_manager[0].name == "x"
assert s[0].axes_manager[1].units == "µm"
assert s[0].axes_manager[1].name == "y"
# 1 to 16 files are a 16bit image of work area and elemental maps
for elmap in s[:-1]:
assert elmap.data.dtype == np.uint8
assert elmap.data.shape == (512, 512)
assert elmap.axes_manager.signal_dimension == 2
assert elmap.axes_manager[0].units == "µm"
assert elmap.axes_manager[0].name == "x"
assert elmap.axes_manager[1].units == "µm"
assert elmap.axes_manager[1].name == "y"
# last file is the datacube
assert s[-1].data.dtype == np.uint8
assert s[-1].data.shape == (512, 512, 4096)
assert s[-1].axes_manager.signal_dimension == 1
assert s[-1].axes_manager.navigation_dimension == 2
assert s[-1].axes_manager[0].units == "µm"
assert s[-1].axes_manager[0].name == "x"
assert s[-1].axes_manager[1].units == "µm"
assert s[-1].axes_manager[1].name == "y"
assert s[-1].axes_manager[2].units == "keV"
np.testing.assert_allclose(
s[-1].axes_manager[2].offset, -0.000789965 - 0.00999866 * 96
)
np.testing.assert_allclose(s[-1].axes_manager[2].scale, 0.00999866)
assert s[-1].axes_manager[2].name == "Energy"
# check scale (image)
filename = TESTS_FILE_PATH / "Sample" / "00_View000" / TEST_FILES[1]
s1 = hs.load(filename, reader="JEOL")
np.testing.assert_allclose(s[0].axes_manager[0].scale, s1.axes_manager[0].scale)
assert s[0].axes_manager[0].units == s1.axes_manager[0].units
# check scale (pts)
filename = TESTS_FILE_PATH / "Sample" / "00_View000" / TEST_FILES[7]
s2 = hs.load(filename, reader="JEOL")
np.testing.assert_allclose(s[6].axes_manager[0].scale, s2.axes_manager[0].scale)
assert s[6].axes_manager[0].units == s2.axes_manager[0].units
def test_load_image():
# test load work area haadf image
filename = TESTS_FILE_PATH / "Sample" / "00_View000" / TEST_FILES[1]
s = hs.load(filename, reader="JEOL")
assert s.data.dtype == np.uint8
assert s.data.shape == (512, 512)
assert s.axes_manager.signal_dimension == 2
assert s.axes_manager[0].units == "µm"
np.testing.assert_allclose(s.axes_manager[0].scale, 0.00869140587747097)
assert s.axes_manager[0].name == "x"
assert s.axes_manager[1].units == "µm"
np.testing.assert_allclose(s.axes_manager[1].scale, 0.00869140587747097)
assert s.axes_manager[1].name == "y"
@pytest.mark.parametrize("SI_dtype", [np.int8, np.uint8])
def test_load_datacube(SI_dtype):
pytest.importorskip("numba")
# test load eds datacube
filename = TESTS_FILE_PATH / "Sample" / "00_View000" / TEST_FILES[7]
s = hs.load(filename, SI_dtype=SI_dtype, cutoff_at_kV=5, reader="JEOL")
assert s.data.dtype == SI_dtype
assert s.data.shape == (512, 512, 596)
assert s.axes_manager.signal_dimension == 1
assert s.axes_manager.navigation_dimension == 2
assert s.axes_manager[0].units == "µm"
np.testing.assert_allclose(s.axes_manager[0].scale, 0.00869140587747097)
assert s.axes_manager[0].name == "x"
assert s.axes_manager[1].units == "µm"
np.testing.assert_allclose(s.axes_manager[1].scale, 0.00869140587747097)
assert s.axes_manager[1].name == "y"
assert s.axes_manager[2].units == "keV"
np.testing.assert_allclose(s.axes_manager[2].offset, -0.000789965 - 0.00999866 * 96)
np.testing.assert_allclose(s.axes_manager[2].scale, 0.00999866)
assert s.axes_manager[2].name == "Energy"
def test_load_datacube_rebin_energy():
pytest.importorskip("numba")
filename = TESTS_FILE_PATH / "Sample" / "00_View000" / TEST_FILES[7]
s = hs.load(filename, cutoff_at_kV=0.1, reader="JEOL")
s_sum = s.sum()
ref_data = hs.signals.Signal1D(np.array([3, 23, 77, 200, 487, 984, 1599, 2391]))
np.testing.assert_allclose(s_sum.data[88:96], ref_data.data)
rebin_energy = 8
s2 = hs.load(filename, rebin_energy=rebin_energy, reader="JEOL")
s2_sum = s2.sum()
np.testing.assert_allclose(s2_sum.data[11:12], ref_data.data.sum())
with pytest.raises(ValueError, match="must be a divisor"):
_ = hs.load(filename, rebin_energy=10, reader="JEOL")
def test_load_datacube_cutoff_at_kV():
pytest.importorskip("numba")
gc.collect()
cutoff_at_kV = 10.0
filename = TESTS_FILE_PATH / "Sample" / "00_View000" / TEST_FILES[7]
s = hs.load(filename, cutoff_at_kV=None, reader="JEOL")
s2 = hs.load(filename, cutoff_at_kV=cutoff_at_kV, reader="JEOL")
assert s2.axes_manager[-1].size == 1096
np.testing.assert_allclose(s2.axes_manager[2].scale, 0.00999866)
np.testing.assert_allclose(s2.axes_manager[2].offset, -0.9606613)
np.testing.assert_allclose(s.sum().isig[:cutoff_at_kV].data, s2.sum().data)
def test_load_datacube_downsample():
pytest.importorskip("numba")
downsample = 8
filename = TESTS_FILE_PATH / TEST_FILES[0]
s = hs.load(filename, downsample=1, reader="JEOL")[-1]
s2 = hs.load(filename, downsample=downsample, reader="JEOL")[-1]
s_sum = s.sum(-1).rebin(scale=(downsample, downsample))
s2_sum = s2.sum(-1)
assert s2.axes_manager[-1].size == 4096
np.testing.assert_allclose(s2.axes_manager[2].scale, 0.00999866)
np.testing.assert_allclose(s2.axes_manager[2].offset, -0.9606613)
for axis in s2.axes_manager.navigation_axes:
assert axis.size == 64
np.testing.assert_allclose(axis.scale, 0.069531247)
np.testing.assert_allclose(axis.offset, 0.0)
np.testing.assert_allclose(s_sum.data, s2_sum.data)
with pytest.raises(ValueError, match="must be a divisor"):
_ = hs.load(filename, downsample=10, reader="JEOL")[-1]
with pytest.raises(
ValueError,
match="`downsample` can't be an iterable of length different from 2.",
):
_ = hs.load(filename, downsample=[2, 2, 2], reader="JEOL")[-1]
downsample = [8, 16]
s = hs.load(filename, downsample=downsample, reader="JEOL")[-1]
assert s.axes_manager["x"].size * downsample[0] == 512
assert s.axes_manager["y"].size * downsample[1] == 512
with pytest.raises(ValueError, match="must be a divisor"):
_ = hs.load(filename, downsample=[256, 100], reader="JEOL")[-1]
with pytest.raises(ValueError, match="must be a divisor"):
_ = hs.load(filename, downsample=[100, 256], reader="JEOL")[-1]
def test_load_datacube_frames():
pytest.importorskip("numba")
rebin_energy = 2048
filename = TESTS_FILE_PATH / "Sample" / "00_View000" / TEST_FILES[7]
s = hs.load(filename, sum_frames=True, rebin_energy=rebin_energy, reader="JEOL")
assert s.data.shape == (512, 512, 2)
s_frame = hs.load(
filename, sum_frames=False, rebin_energy=rebin_energy, reader="JEOL"
)
assert s_frame.data.shape == (14, 512, 512, 2)
np.testing.assert_allclose(s_frame.sum(axis="Frame").data, s.data)
np.testing.assert_allclose(
s_frame.sum(axis=["x", "y", "Energy"]).data,
np.array(
[
22355,
21975,
22038,
21904,
21846,
22115,
22021,
21917,
22123,
21919,
22141,
22024,
22086,
21797,
]
),
)
@pytest.mark.parametrize("filename_as_string", [True, False])
def test_load_eds_file(filename_as_string):
pytest.importorskip("numba")
pytest.importorskip("exspy", reason="exspy not installed.")
filename = TESTS_FILE_PATH / "met03.EDS"
if filename_as_string:
filename = str(filename)
s = hs.load(filename, reader="JEOL")
assert s.metadata.Signal.signal_type == "EDS_TEM"
assert isinstance(s, hs.signals.Signal1D)
assert s.data.shape == (2048,)
axis = s.axes_manager[0]
assert axis.name == "Energy"
assert axis.size == 2048
assert axis.offset == -0.00176612
assert axis.scale == 0.0100004
# delete timestamp from metadata since it's runtime dependent
del s.metadata.General.FileIO.Number_0.timestamp
md_dict = s.metadata.as_dictionary()
assert md_dict["General"] == {
"original_filename": "met03.EDS",
"time": "14:14:51",
"date": "2018-06-25",
"title": "EDX",
"FileIO": {
"0": {
"operation": "load",
"hyperspy_version": hs.__version__,
"io_plugin": "rsciio.jeol",
}
},
}
TEM_dict = md_dict["Acquisition_instrument"]["TEM"]
assert TEM_dict == {
"beam_energy": 200.0,
"Detector": {
"EDS": {
"azimuth_angle": 90.0,
"detector_type": "EX24075JGT",
"elevation_angle": 22.299999237060547,
"energy_resolution_MnKa": 138.0,
"live_time": 30.0,
}
},
"Stage": {"tilt_alpha": 0.0},
}
def test_shift_jis_encoding():
# See https://github.com/hyperspy/hyperspy/issues/2812
filename = TESTS_FILE_PATH / "181019-BN.ASW"
# make sure we can open the file
with open(filename, "br"):
pass
try:
_ = hs.load(filename, reader="JEOL")
except FileNotFoundError:
# we don't have the other files required to open the data
pass
def test_number_of_frames():
pytest.importorskip("numba")
dir1 = TESTS_FILE_PATH / "Sample" / "00_View000"
dir2 = TESTS_FILE_PATH / "InvalidFrame" / "Sample" / "00_Dummy-Data"
test_list = [ # dir, file, num_frames, num_valid_frames
[dir1, TEST_FILES[7], 14, 14],
[dir2, TEST_FILES2[8], 1, 0],
[dir2, TEST_FILES2[16], 2, 1],
[dir2, TEST_FILES2[24], 1, 1],
]
for item in test_list:
dirname, filename, frames, valid = item
fname = str(dirname / filename)
# Count number of frames including incomplete frame
data = hs.load(
fname,
sum_frames=False,
only_valid_data=False,
downsample=[32, 32],
rebin_energy=512,
SI_dtype=np.int32,
reader="JEOL",
)
assert data.axes_manager["Frame"].size == frames
# Count number of valid frames
data = hs.load(
fname,
sum_frames=False,
only_valid_data=True,
downsample=[32, 32],
rebin_energy=512,
SI_dtype=np.int32,
reader="JEOL",
)
assert data.axes_manager["Frame"].size == valid
def test_em_image_in_pts():
pytest.importorskip("numba")
dir1 = TESTS_FILE_PATH
dir2 = TESTS_FILE_PATH / "InvalidFrame"
dir2p = dir2 / "Sample" / "00_Dummy-Data"
# no SEM/STEM image
s = hs.load(
dir1 / TEST_FILES[0],
read_em_image=False,
only_valid_data=False,
cutoff_at_kV=1,
reader="JEOL",
)
assert len(s) == 7
s = hs.load(
dir1 / TEST_FILES[0],
read_em_image=True,
only_valid_data=False,
cutoff_at_kV=1,
reader="JEOL",
)
assert len(s) == 7
# with SEM/STEM image
s = hs.load(
dir2 / TEST_FILES2[0],
read_em_image=False,
only_valid_data=False,
cutoff_at_kV=1,
reader="JEOL",
)
assert len(s) == 22
s = hs.load(
dir2 / TEST_FILES2[0],
read_em_image=True,
only_valid_data=False,
cutoff_at_kV=1,
reader="JEOL",
)
assert len(s) == 25
assert (
s[8].metadata.General.title
== "S(T)EM Image extracted from " + s[8].metadata.General.original_filename
)
assert s[8].data[38, 15] == 87
assert s[8].data[38, 16] == 0
# integrate SEM/STEM image along frame axis
s = hs.load(
dir2p / TEST_FILES2[16],
read_em_image=True,
only_valid_data=False,
sum_frames=True,
cutoff_at_kV=1,
frame_list=[0, 0, 0, 1],
reader="JEOL",
)
assert s[1].data[0, 0] == 87 * 4
assert s[1].data[63, 63] == 87 * 3
s = hs.load(
dir2p / TEST_FILES2[16],
read_em_image=True,
only_valid_data=False,
sum_frames=False,
cutoff_at_kV=1,
reader="JEOL",
)
s2 = hs.load(
dir2p / TEST_FILES2[16],
read_em_image=True,
only_valid_data=False,
sum_frames=True,
cutoff_at_kV=1,
reader="JEOL",
)
s1 = [s[0].data.sum(axis=0), s[1].data.sum(axis=0)]
assert np.array_equal(s1[0], s2[0].data)
assert np.array_equal(s1[1], s2[1].data)
def test_pts_lazy():
pytest.importorskip("sparse")
dir2 = TESTS_FILE_PATH / "InvalidFrame"
dir2p = dir2 / "Sample" / "00_Dummy-Data"
s = hs.load(
dir2p / TEST_FILES2[16],
read_em_image=True,
only_valid_data=False,
sum_frames=False,
lazy=True,
reader="JEOL",
)
s1 = [s[0].data.sum(axis=0).compute(), s[1].data.sum(axis=0).compute()]
s2 = hs.load(
dir2p / TEST_FILES2[16],
read_em_image=True,
only_valid_data=False,
sum_frames=True,
lazy=False,
reader="JEOL",
)
assert np.array_equal(s1[0], s2[0].data)
assert np.array_equal(s1[1], s2[1].data)
def test_pts_frame_shift():
pytest.importorskip("sparse")
file = TESTS_FILE_PATH2 / "Sample" / "00_Dummy-Data" / TEST_FILES2[16]
# without frame shift
ref = hs.load(
file,
read_em_image=True,
only_valid_data=False,
sum_frames=False,
lazy=False,
reader="JEOL",
)
# x, y, en
points = [[24, 23, 106], [21, 16, 106]]
values = [3, 1]
targets = np.asarray([[2, 3, 106], [20, 3, 100], [4, 20, 100]], dtype=np.int16)
# check values before shift
d0 = np.zeros(len(points), dtype=np.int16)
d1 = np.zeros(len(points), dtype=np.int16)
d2 = np.zeros(len(points), dtype=np.int16)
for frame, p in enumerate(points):
d0[frame] = ref[0].data[frame, p[1], p[0], p[2]]
assert d0[frame] == values[frame]
for target in targets:
sfts = np.zeros((ref[0].axes_manager["Frame"].size, 3), dtype=np.int16)
for frame in range(ref[0].axes_manager["Frame"].size):
origin = points[frame]
sfts[frame] = np.asarray(target) - np.asarray(origin)
shifts = sfts[:, [1, 0, 2]]
# test frame shifts for dense (normal) loading
s0 = hs.load(
file,
read_em_image=True,
only_valid_data=False,
sum_frames=False,
frame_shifts=shifts,
lazy=False,
reader="JEOL",
)
for frame in range(s0[0].axes_manager["Frame"].size):
origin = points[frame]
sfts0 = s0[0].original_metadata.jeol_pts_frame_shifts[frame]
pos = [origin[0] + sfts0[1], origin[1] + sfts0[0], origin[2] + sfts0[2]]
d1[frame] = s0[0].data[frame, pos[1], pos[0], pos[2]]
assert d1[frame] == d0[frame]
# test frame shifts for lazy loading
s1 = hs.load(
file,
read_em_image=True,
only_valid_data=False,
sum_frames=False,
frame_shifts=shifts,
lazy=True,
reader="JEOL",
)
dt = s1[0].data.compute()
for frame in range(s0[0].axes_manager["Frame"].size):
origin = points[frame]
sfts0 = s0[0].original_metadata.jeol_pts_frame_shifts[frame]
pos = [origin[0] + sfts0[1], origin[1] + sfts0[0], origin[2] + sfts0[2]]
d2[frame] = dt[frame, pos[1], pos[0], pos[2]]
assert d2[frame] == d0[frame]
# test frame shift with default values (no energy shift)
sfts = np.array([[1, 2], [10, 3]])
max_sfts = sfts.max(axis=0)
min_sfts = sfts.min(axis=0)
fs = sfts - max_sfts
s = hs.load(
file, frame_shifts=sfts, sum_frames=False, only_valid_data=False, reader="JEOL"
)
sz = min_sfts - max_sfts + ref[0].data.shape[1:3]
assert s.data.shape == (2, sz[0], sz[1], 4096)
for fr, sft in enumerate(fs):
assert np.array_equal(
s.data[fr, 20 + sft[0] : 30 + sft[0], 20 + sft[1] : 30 + sft[1], 106],
ref[0].data[fr, 20:30, 20:30, 106],
)
def test_broken_files(tmp_path):
pytest.importorskip("numba")
TEST_BROKEN_FILES = ["test.asw", "test.pts", "test.img"]
for _file in TEST_BROKEN_FILES:
file = tmp_path / _file
with open(file, "w") as fd:
fd.write("aaaaaaaa")
if file.suffix == ".asw":
# in case of asw, valid data can not be obtained
with pytest.raises(ValueError, match="Not a valid JEOL asw format"):
_ = hs.load(file, reader="JEOL")
else:
# just skipping broken files
s = hs.load(file, reader="JEOL")
assert s == []
def test_seq_eds_files(tmp_path):
pos0 = [0.0, 0.0, -0.000132, 0.000132]
pos = [
[0.0, 0.0, 0.0, 0.0],
[2.04070450e-05, -4.77886497e-05, 1.05909980e-05, -3.87475538e-05],
[1.91154599e-05, -3.07397260e-05, -5.45048924e-05, 5.16634051e-05],
]
memo = ["", "030", "035"]
test_file = TESTS_FILE_PATH / "jeol_seq_eds_files.zip"
with zipfile.ZipFile(test_file, "r") as zipped:
zipped.extractall(tmp_path)
# test reading sequential acuired EDS spectrum
s = hs.load(tmp_path / "1" / "1.ASW", reader="JEOL")
# check if three subfiles are in file (img, eds, eds)
assert len(s) == 3
# check positional information in subfiles
for i, p in enumerate(pos):
sampleinfo = s[i].original_metadata["asw"]["SampleInfo"]["0"]
viewinfo = sampleinfo["ViewInfo"]["0"]
np.testing.assert_allclose(viewinfo["PositionMM2"], pos0)
viewdata_asw = viewinfo["ViewData"]
viewdata = s[i].original_metadata["asw_viewdata"]
np.testing.assert_allclose(viewdata["PositionMM2"], p)
np.testing.assert_allclose(
viewdata["PositionMM2"], viewdata_asw[i]["PositionMM2"]
)
assert viewdata["Memo"] == memo[i]
for s_ in s[1:3]:
assert s_.metadata.Signal.signal_type == "EDS_TEM"
assert isinstance(s_, hs.signals.Signal1D)
# test with broken asw file
fname = tmp_path / "1" / "1.ASW"
fname2 = tmp_path / "1" / "2.ASW"
with open(fname, "rb") as f:
data = bytearray(f.read())
# No ViewData
data2 = data.copy()
data2[0x42D] = 0x30
with open(fname2, "wb") as f:
f.write(data2)
dat = hs.load(fname2, reader="JEOL")
assert len(dat) == 0
# No ViewInfo
data2 = data.copy()
data2[0x1AD] = 0x30
with open(fname2, "wb") as f:
f.write(data2)
dat = hs.load(fname2, reader="JEOL")
assert len(dat) == 0
# No SampleInfo
data2 = data.copy()
data2[0x6E] = 0x30
with open(fname2, "wb") as f:
f.write(data2)
dat = hs.load(fname2, reader="JEOL")
assert len(dat) == 0
# test read for pseudo SEM eds/img data
sub_dir = tmp_path / "1" / "Sample" / "00_View002"
test_files = ["View002_0000000.img", "View002_0000001.eds"]
# rewrite AccV 200 kV to 20 kV to generate pseudo SEM data
# .img
with open(sub_dir / test_files[0], "rb") as f:
data = bytearray(f.read())
data[0x75BC] = 0xA0
data[0x75BD] = 0x41
with open(sub_dir / ("x" + test_files[0]), "wb") as f:
f.write(data)
s = hs.load(sub_dir / ("x" + test_files[0]), reader="JEOL")
assert "SEM" in s.metadata["Acquisition_instrument"]
# .eds
with open(sub_dir / test_files[1], "rb") as f:
data = bytearray(f.read())
data[0x4B13] = 0x34
with open(sub_dir / ("x" + test_files[1]), "wb") as f:
f.write(data)
s = hs.load(sub_dir / ("x" + test_files[1]), reader="JEOL")
assert s.metadata.Signal.signal_type == "EDS_SEM"
assert isinstance(s, hs.signals.Signal1D)
assert "SEM" in s.metadata["Acquisition_instrument"]
def test_frame_start_index(tmp_path):
pytest.importorskip("numba")
file = TESTS_FILE_PATH / "Sample" / "00_View000" / TEST_FILES[7]
frame_start_index_ref = [
0,
49660,
98602,
147633,
196414,
245078,
294263,
343283,
392081,
441310,
490126,
539395,
588409,
637523,
686084,
]
ref = hs.load(
file,
sum_frames=False,
downsample=[32, 32],
rebin_energy=512,
SI_dtype=np.int32,
reader="JEOL",
)
frame_start_index = ref.original_metadata.jeol_pts_frame_start_index
assert np.array_equal(frame_start_index, frame_start_index_ref)
s = hs.load(
file,
frame_list=[2, 5],
downsample=[32, 32],
rebin_energy=512,
SI_dtype=np.int32,
reader="JEOL",
)
frame_start_index = s.original_metadata.jeol_pts_frame_start_index
assert np.array_equal(frame_start_index[0:6], frame_start_index_ref[0:6])
assert np.all(frame_start_index[6:] == -1)
s = hs.load(
file,
frame_list=[4, 9],
frame_start_index=frame_start_index,
downsample=[32, 32],
rebin_energy=512,
SI_dtype=np.int32,
reader="JEOL",
)
frame_start_index = s.original_metadata.jeol_pts_frame_start_index
assert np.array_equal(frame_start_index[0:10], frame_start_index_ref[0:10])
assert np.all(frame_start_index[10:] == -1)
s = hs.load(
file,
frame_list=[11, 5, 20],
sum_frames=False,
frame_start_index=frame_start_index,
downsample=[32, 32],
rebin_energy=512,
SI_dtype=np.int32,
reader="JEOL",
)
assert s.data.shape == (2, 16, 16, 8)
# test with pseudo "SEM" data
test_file = tmp_path / "test.pts"
with open(file, "rb") as f:
data = bytearray(f.read())
# AcckV = 20 kV
data[0x1116] = 0xA0
data[0x1117] = 0x41
with open(test_file, "wb") as f:
f.write(data)
s = hs.load(
test_file,
downsample=[32, 32],
rebin_energy=512,
SI_dtype=np.int32,
reader="JEOL",
)
assert s.metadata["Signal"]["signal_type"] == "EDS_SEM"
|