1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.
from pathlib import Path
import numpy as np
import pytest
from rsciio.utils.tests import assert_deep_almost_equal
hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
exspy = pytest.importorskip("exspy", reason="exspy not installed")
TEST_DATA_PATH = Path(__file__).parent / "data" / "pantarhei"
class TestLoadingPrzFiles:
def test_metadata_prz_v5(self):
md = {
"General": {"title": "AD", "original_filename": "panta_rhei_sample_v5.prz"},
"Signal": {"signal_type": ""},
"Acquisition_instrument": {
"TEM": {
"beam_energy": 200.0,
"acquisition_mode": "STEM",
"magnification": 10000000,
"camera_length": 0.02,
}
},
}
am = {
"axis-0": {
"_type": "UniformDataAxis",
"name": "Y",
"units": "m",
"navigate": False,
"is_binned": False,
"size": 16,
"scale": 7.795828292907633e-09,
"offset": 0.0,
},
"axis-1": {
"_type": "UniformDataAxis",
"name": "X",
"units": "m",
"navigate": False,
"is_binned": False,
"size": 16,
"scale": 7.795828292907633e-09,
"offset": 0.0,
},
}
s = hs.load(TEST_DATA_PATH / "panta_rhei_sample_v5.prz")
md_file = s.metadata.as_dictionary()
md_file.pop("_HyperSpy")
md_file["General"].pop("FileIO")
assert_deep_almost_equal(md_file, md)
assert_deep_almost_equal(s.axes_manager.as_dictionary(), am)
assert s.data.shape == (16, 16)
assert s.data.max() == 40571
assert s.data.min() == 36193
np.testing.assert_almost_equal(s.data.std(), 1025.115644550)
def test_save_load_cycle(tmp_path):
fname = tmp_path / "test_file.prz"
s = hs.load(TEST_DATA_PATH / "panta_rhei_sample_v5.prz")
s.save(fname)
assert fname.is_file()
s2 = hs.load(fname)
np.testing.assert_allclose(s2.data, s.data)
assert s2.metadata.Signal.signal_type == s.metadata.Signal.signal_type
def test_save_load_cycle_new_signal_1D_nav1(tmp_path):
fname = tmp_path / "test_file_new_signal_1D_nav1.prz"
data = np.arange(20).reshape(2, 10)
s = hs.signals.Signal1D(data)
s.save(fname)
assert fname.is_file()
s2 = hs.load(fname)
np.testing.assert_allclose(s2.data, s.data)
assert isinstance(s2, s.__class__)
def test_save_load_cycle_new_signal_1D_nav2(tmp_path):
fname = tmp_path / "test_file_new_signal1D_nav2.prz"
data = np.arange(100).reshape(2, 5, 10)
s = hs.signals.Signal2D(data)
s.save(fname)
assert fname.is_file()
s2 = hs.load(fname)
np.testing.assert_allclose(s2.data, s.data)
assert isinstance(s2, s.__class__)
def test_save_load_cycle_new_signal_2D(tmp_path):
fname = tmp_path / "test_file_new_signal2D.prz"
data = np.arange(100).reshape(2, 5, 10)
s = hs.signals.Signal2D(data)
s.save(fname)
assert fname.is_file()
s2 = hs.load(fname)
np.testing.assert_allclose(s2.data, s.data)
assert isinstance(s2, s.__class__)
def test_save_load_cycle_new_signal_EELS(tmp_path):
fname = tmp_path / "test_file_new_signal2D.prz"
data = np.arange(100).reshape(2, 5, 10)
s = exspy.signals.EELSSpectrum(data)
s.save(fname)
assert fname.is_file()
s2 = hs.load(fname)
np.testing.assert_allclose(s2.data, s.data)
assert isinstance(s2, s.__class__)
def test_save_load_cycle_new_signal_EELS_aperture_out(tmp_path):
fname = tmp_path / "test_file_new_signal2D_aperture_out.prz"
data = np.arange(100).reshape(2, 5, 10)
s = exspy.signals.EELSSpectrum(data)
s.metadata.set_item("Acquisition_instrument.TEM.Detector.EELS.aperture", "Out")
s.save(fname)
assert fname.is_file()
s2 = hs.load(fname)
np.testing.assert_allclose(s2.data, s.data)
assert isinstance(s2, s.__class__)
assert s2.metadata.Acquisition_instrument.TEM.Detector.EELS.aperture == "Out"
def test_metadata_STEM(tmp_path):
fname = tmp_path / "test_file_new_signal_metadata_STEM.prz"
data = np.arange(20).reshape(2, 10)
s = exspy.signals.EELSSpectrum(data)
# Set some metadata
md = {
"Acquisition_instrument": {
"TEM": {
"beam_energy": 200.0,
"acquisition_mode": "STEM",
"magnification": 500000,
"camera_length": 200,
"convergence_angle": 20,
"Detector": {
"EELS": {"collection_angle": 60, "aperture": 5},
},
},
},
}
s.metadata.add_dictionary(md)
s.metadata.General.add_dictionary({"date": "2022-07-08", "time": "16:00"})
s.save(fname)
assert fname.is_file()
s2 = hs.load(fname)
np.testing.assert_allclose(s2.data, s.data)
assert isinstance(s2, s.__class__)
assert_deep_almost_equal(
s2.metadata.Acquisition_instrument.as_dictionary(),
s.metadata.Acquisition_instrument.as_dictionary(),
)
def test_metadata_TEM(tmp_path):
fname = tmp_path / "test_file_new_signal_metadata_TEM.prz"
data = np.arange(20).reshape(2, 10)
s = exspy.signals.EELSSpectrum(data)
# Set some metadata
md = {
"Acquisition_instrument": {
"TEM": {
"beam_energy": 200.0,
"acquisition_mode": "TEM",
"magnification": 500000,
"camera_length": 200,
"Detector": {
"EELS": {"collection_angle": 60, "aperture": 5},
},
},
},
}
s.metadata.add_dictionary(md)
s.metadata.General.add_dictionary({"date": "2022-07-08", "time": "16:00"})
s.save(fname)
assert fname.is_file()
s2 = hs.load(fname)
np.testing.assert_allclose(s2.data, s.data)
assert isinstance(s2, s.__class__)
assert_deep_almost_equal(
s2.metadata.Acquisition_instrument.as_dictionary(),
s.metadata.Acquisition_instrument.as_dictionary(),
)
|