File: test_tia.py

package info (click to toggle)
python-rosettasciio 0.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,644 kB
  • sloc: python: 36,638; xml: 2,582; makefile: 20; ansic: 4
file content (534 lines) | stat: -rw-r--r-- 22,733 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.

import sys
from pathlib import Path

import numpy as np
import pytest

from rsciio.tia._api import file_reader, load_ser_file

hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
t = pytest.importorskip("traits.api", reason="traits not installed")

TEST_DATA_PATH = Path(__file__).parent / "data" / "tia"
TEST_DATA_PATH_NEW = TEST_DATA_PATH / "new"
TEST_DATA_PATH_OLD = TEST_DATA_PATH / "old"


@pytest.fixture(scope="function")
def prepare_non_zero_float():
    import tarfile

    kwargs = {"filter": "data"} if sys.version_info.minor >= 12 else {}

    tgz_fname = TEST_DATA_PATH_OLD / "non_float_meta_value_zeroed.tar.gz"
    with tarfile.open(tgz_fname, "r:gz") as tar:
        tar.extractall(path=TEST_DATA_PATH_OLD, **kwargs)

    yield

    # teardown code
    (TEST_DATA_PATH_OLD / "non_float_meta_value_zeroed.emi").unlink()
    (TEST_DATA_PATH_OLD / "non_float_meta_value_zeroed_1.ser").unlink()


def test_load_emi_old_new_format():
    # TIA old format
    fname0 = TEST_DATA_PATH_OLD / "64x64_TEM_images_acquire.emi"
    hs.load(fname0)
    # TIA new format
    fname1 = TEST_DATA_PATH_NEW / "128x128_TEM_acquire-sum1.emi"
    hs.load(fname1)


def test_load_image_content():
    # TEM image of the beam stop
    fname0 = TEST_DATA_PATH_OLD / "64x64_TEM_images_acquire.emi"
    s0 = hs.load(fname0)
    data = np.load(fname0.with_suffix(".npy"))
    np.testing.assert_array_equal(s0.data, data)


def test_load_ser_reader_old_new_format():
    # test TIA old format
    fname0 = TEST_DATA_PATH_OLD / "64x64_TEM_images_acquire_1.ser"
    header0, data0 = load_ser_file(fname0)
    assert header0["SeriesVersion"] == 528
    # test TIA new format
    fname1 = TEST_DATA_PATH_NEW / "128x128_TEM_acquire-sum1_1.ser"
    header1, data1 = load_ser_file(fname1)
    assert header1["SeriesVersion"] == 544


def test_load_no_acquire_date(caplog):
    fname = TEST_DATA_PATH_OLD / "no_AcquireDate.emi"
    s = hs.load(fname)
    assert not hasattr(s.metadata.General, "date")
    assert not hasattr(s.metadata.General, "time")
    assert "AcquireDate not found in metadata" in caplog.text


def test_load_more_ser_than_metadata(caplog):
    fname = TEST_DATA_PATH_OLD / "more_ser_then_emi_metadata.emi"
    s0, s1 = hs.load(fname, only_valid_data=True)
    assert hasattr(s0.original_metadata, "ObjectInfo")
    assert not hasattr(s1.original_metadata, "ObjectInfo")
    assert "more_ser_then_emi_metadata.emi did not contain any metadata" in caplog.text


def test_load_non_zero_float(prepare_non_zero_float, caplog):
    fname = TEST_DATA_PATH_OLD / "non_float_meta_value_zeroed.emi"
    s = hs.load(fname)
    assert (
        s.original_metadata.ObjectInfo.ExperimentalDescription.as_dictionary()[
            "OBJ Aperture_um"
        ]
        == "V"
    )
    assert "Expected decimal value for OBJ Aperture" in caplog.text


def test_load_diffraction_point():
    fname0 = TEST_DATA_PATH_OLD / "64x64_diffraction_acquire.emi"
    s0 = hs.load(fname0)
    assert s0.data.shape == (64, 64)
    assert s0.axes_manager.signal_dimension == 2
    assert s0.metadata.Acquisition_instrument.TEM.acquisition_mode == "TEM"
    np.testing.assert_allclose(s0.axes_manager[0].scale, 0.101571, rtol=1e-5)
    assert s0.axes_manager[0].units == "1 / nm"
    assert s0.axes_manager[0].name == "x"
    np.testing.assert_allclose(s0.axes_manager[1].scale, 0.101571, rtol=1e-5)
    assert s0.axes_manager[1].units == "1 / nm"
    assert s0.axes_manager[1].name == "y"


def test_load_diffraction_line_scan():
    fname0 = TEST_DATA_PATH_NEW / "16x16-line_profile_horizontal_5x128x128_EDS.emi"
    s0 = hs.load(fname0)
    # s0[0] contains EDS
    assert s0[0].data.shape == (5, 4000)
    assert s0[0].axes_manager.signal_dimension == 1
    assert s0[0].metadata.Acquisition_instrument.TEM.acquisition_mode == "STEM"
    np.testing.assert_allclose(s0[0].axes_manager[0].scale, 3.68864, rtol=1e-5)
    assert s0[0].axes_manager[0].units == "nm"
    np.testing.assert_allclose(s0[0].axes_manager[1].scale, 5.0, rtol=1e-5)
    assert s0[0].axes_manager[1].units == "eV"
    assert s0[0].axes_manager[0].name == "x"
    assert s0[0].axes_manager[1].name == "Energy"
    # s0[1] contains diffraction patterns
    assert s0[1].data.shape == (5, 128, 128)
    assert s0[1].axes_manager.signal_dimension == 2
    assert s0[1].metadata.Acquisition_instrument.TEM.acquisition_mode == "STEM"
    np.testing.assert_allclose(s0[1].axes_manager[0].scale, 3.68864, rtol=1e-5)
    assert s0[1].axes_manager[0].units == "nm"
    assert s0[1].axes_manager[1].units == "1 / nm"
    assert s0[1].axes_manager[0].name == "x"
    np.testing.assert_allclose(s0[1].axes_manager[1].scale, 0.174353, rtol=1e-5)
    np.testing.assert_allclose(s0[1].axes_manager[2].scale, 0.174353, rtol=1e-5)
    assert s0[1].axes_manager[2].units == "1 / nm"
    assert s0[1].axes_manager[1].units == "1 / nm"
    assert s0[1].axes_manager[1].name == "x"
    assert s0[1].axes_manager[2].name == "y"


def test_load_diffraction_area_scan():
    fname0 = TEST_DATA_PATH_NEW / "16x16-diffraction_imagel_5x5x256x256_EDS.emi"
    s0 = hs.load(fname0)
    # s0[0] contains EDS
    assert s0[0].data.shape == (5, 5, 4000)
    assert s0[0].axes_manager.signal_dimension == 1
    assert s0[0].metadata.Acquisition_instrument.TEM.acquisition_mode == "STEM"
    np.testing.assert_allclose(s0[0].axes_manager[0].scale, 1.87390, rtol=1e-5)
    assert s0[0].axes_manager[0].units == "nm"
    np.testing.assert_allclose(s0[0].axes_manager[1].scale, -1.87390, rtol=1e-5)
    assert s0[0].axes_manager[1].units == "nm"
    np.testing.assert_allclose(s0[0].axes_manager[2].scale, 5.0, rtol=1e-5)
    assert s0[0].axes_manager[2].units == "eV"
    # s0[1] contains diffraction patterns
    assert s0[1].data.shape == (5, 5, 256, 256)
    assert s0[1].axes_manager.signal_dimension == 2
    assert s0[1].metadata.Acquisition_instrument.TEM.acquisition_mode == "STEM"
    np.testing.assert_allclose(s0[1].axes_manager[0].scale, 1.87390, rtol=1e-5)
    assert s0[1].axes_manager[0].units == "nm"
    np.testing.assert_allclose(s0[1].axes_manager[2].scale, 0.174353, rtol=1e-5)
    assert s0[1].axes_manager[2].units == "1 / nm"
    assert s0[0].axes_manager[0].name == "x"
    assert s0[0].axes_manager[1].name == "y"
    assert s0[0].axes_manager[2].name == "Energy"
    np.testing.assert_allclose(s0[1].axes_manager[0].scale, 1.87390, rtol=1e-5)
    assert s0[1].axes_manager[0].name == "x"
    np.testing.assert_allclose(s0[1].axes_manager[1].scale, -1.87390, rtol=1e-5)
    assert s0[1].axes_manager[1].units == "nm"
    assert s0[1].axes_manager[1].name == "y"
    assert s0[1].axes_manager[2].name == "x"
    np.testing.assert_allclose(s0[1].axes_manager[3].scale, 0.174353, rtol=1e-5)
    assert s0[1].axes_manager[3].units == "1 / nm"
    assert s0[1].axes_manager[3].name == "y"


def test_load_spectrum_point():
    fname0 = TEST_DATA_PATH_OLD / "16x16-point_spectrum-1x1024.emi"
    s0 = hs.load(fname0)
    assert s0.data.shape == (1, 1024)
    assert s0.axes_manager.signal_dimension == 1
    assert s0.metadata.Acquisition_instrument.TEM.acquisition_mode == "STEM"
    # single spectrum should be imported as 1D data, not 2D
    # TODO: the following calibration is wrong because it parse the
    # 'Dim-1_CalibrationDelta' from the ser header, which is not correct in
    # case of point spectra. However, the position seems to be saved in
    # 'PositionX' and 'PositionY' arrays of the ser header, so it should
    # be possible to workaround using the position arrays.
    #        np.testing.assert_almost_equal(
    #            s0.axes_manager[0].scale, 1.0, places=5)
    #        np.testing.assert_equal(s0.axes_manager[0].units, '')
    #        np.testing.assert_is(s0.axes_manager[0].name, 'Position index')
    np.testing.assert_allclose(s0.axes_manager[1].scale, 0.2, rtol=1e-5)
    assert s0.axes_manager[1].units == "eV"
    assert s0.axes_manager[1].name == "Energy"

    fname1 = TEST_DATA_PATH_OLD / "16x16-2_point-spectra-2x1024.emi"
    s1 = hs.load(fname1)
    assert s1.data.shape == (2, 1024)
    assert s1.axes_manager.signal_dimension == 1
    assert s1.metadata.Acquisition_instrument.TEM.acquisition_mode == "STEM"
    np.testing.assert_allclose(s0.axes_manager[1].scale, 0.2, rtol=1e-5)
    assert s0.axes_manager[1].units == "eV"
    assert s0.axes_manager[1].name == "Energy"


def test_load_spectrum_line_scan():
    fname0 = TEST_DATA_PATH_OLD / "16x16-line_profile_horizontal_10x1024.emi"
    s0 = hs.load(fname0)
    assert s0.data.shape == (10, 1024)
    assert s0.axes_manager.signal_dimension == 1
    assert s0.metadata.Acquisition_instrument.TEM.acquisition_mode == "STEM"
    np.testing.assert_allclose(s0.axes_manager[0].scale, 0.123034, rtol=1e-5)
    assert s0.axes_manager[0].units == "nm"
    np.testing.assert_allclose(s0.axes_manager[1].scale, 0.2, rtol=1e-5)
    assert s0.axes_manager[1].units == "eV"
    assert s0.axes_manager[0].name == "x"
    assert s0.axes_manager[1].name == "Energy"

    fname1 = TEST_DATA_PATH_OLD / "16x16-line_profile_diagonal_10x1024.emi"
    s1 = hs.load(fname1)
    assert s1.data.shape == (10, 1024)
    assert s1.axes_manager.signal_dimension == 1
    assert s1.metadata.Acquisition_instrument.TEM.acquisition_mode == "STEM"
    np.testing.assert_allclose(s1.axes_manager[0].scale, 0.166318, rtol=1e-5)
    assert s1.axes_manager[0].units == "nm"
    np.testing.assert_allclose(s1.axes_manager[1].scale, 0.2, rtol=1e-5)
    assert s1.axes_manager[1].units == "eV"
    assert s0.axes_manager[0].name == "x"


def test_load_spectrum_area_scan():
    fname0 = TEST_DATA_PATH_OLD / "16x16-spectrum_image-5x5x1024.emi"
    s0 = hs.load(fname0)
    assert s0.data.shape == (5, 5, 1024)
    assert s0.axes_manager.signal_dimension == 1
    assert s0.metadata.Acquisition_instrument.TEM.acquisition_mode == "STEM"
    np.testing.assert_allclose(s0.axes_manager[0].scale, 0.120539, rtol=1e-5)
    assert s0.axes_manager[0].units == "nm"
    np.testing.assert_allclose(s0.axes_manager[1].scale, -0.120539, rtol=1e-5)
    assert s0.axes_manager[1].units == "nm"
    np.testing.assert_allclose(s0.axes_manager[2].scale, 0.2, rtol=1e-5)
    assert s0.axes_manager[2].units == "eV"
    assert s0.axes_manager[2].name == "Energy"
    assert s0.axes_manager[1].name == "y"
    assert s0.axes_manager[2].name == "Energy"


def test_load_spectrum_area_scan_not_square():
    fname0 = TEST_DATA_PATH_NEW / "16x16-spectrum_image_5x5x4000-not_square.emi"
    s0 = hs.load(fname0)
    assert s0.data.shape == (5, 5, 4000)
    assert s0.axes_manager.signal_dimension == 1
    assert s0.metadata.Acquisition_instrument.TEM.acquisition_mode == "STEM"
    np.testing.assert_allclose(s0.axes_manager[0].scale, 1.98591, rtol=1e-5)
    assert s0.axes_manager[0].units == "nm"
    np.testing.assert_allclose(s0.axes_manager[1].scale, -4.25819, rtol=1e-5)
    assert s0.axes_manager[1].units == "nm"
    np.testing.assert_allclose(s0.axes_manager[2].scale, 5.0, rtol=1e-5)
    assert s0.axes_manager[2].units == "eV"


def test_load_search():
    fname0 = TEST_DATA_PATH_NEW / "128x128-TEM_search.emi"
    s0 = hs.load(fname0)
    assert s0.data.shape == (128, 128)
    np.testing.assert_allclose(s0.axes_manager[0].scale, 5.26121, rtol=1e-5)
    assert s0.axes_manager[0].units == "nm"
    np.testing.assert_allclose(s0.axes_manager[1].scale, 5.26121, rtol=1e-5)
    assert s0.axes_manager[1].units == "nm"

    fname1 = TEST_DATA_PATH_OLD / "16x16_STEM_BF_DF_search.emi"
    s1 = hs.load(fname1)
    assert len(s1) == 2
    for s in s1:
        assert s.data.shape == (16, 16)
        assert s.metadata.Acquisition_instrument.TEM.acquisition_mode == "STEM"
        np.testing.assert_allclose(s.axes_manager[0].scale, 22.026285, rtol=1e-5)
        assert s.axes_manager[0].units == "nm"
        np.testing.assert_allclose(s.axes_manager[1].scale, 22.026285, rtol=1e-5)
        assert s.axes_manager[1].units == "nm"


def test_load_stack_image_preview():
    fname0 = TEST_DATA_PATH_OLD / "64x64x5_TEM_preview.emi"
    s0 = hs.load(fname0)
    assert s0.data.shape == (5, 64, 64)
    assert s0.axes_manager.signal_dimension == 2
    assert s0.metadata.Acquisition_instrument.TEM.acquisition_mode == "TEM"
    np.testing.assert_allclose(s0.axes_manager[0].scale, 1.0, rtol=1e-5)
    assert s0.axes_manager[0].units is t.Undefined
    np.testing.assert_allclose(s0.axes_manager[1].scale, 6.281833, rtol=1e-5)
    assert s0.axes_manager[1].units == "nm"
    np.testing.assert_allclose(s0.axes_manager[2].scale, 6.281833, rtol=1e-5)
    assert s0.axes_manager[2].units == "nm"
    assert s0.axes_manager[0].units is t.Undefined
    assert s0.axes_manager[0].scale == 1.0
    assert s0.axes_manager[0].name is t.Undefined
    assert s0.axes_manager[1].name == "x"
    assert s0.axes_manager[2].name == "y"

    fname2 = TEST_DATA_PATH_NEW / "128x128x5-diffraction_preview.emi"
    s2 = hs.load(fname2)
    assert s2.data.shape == (5, 128, 128)
    np.testing.assert_allclose(s2.axes_manager[1].scale, 0.042464, rtol=1e-5)
    assert s0.axes_manager[0].units is t.Undefined
    assert s2.axes_manager[1].units == "1 / nm"
    np.testing.assert_allclose(s2.axes_manager[2].scale, 0.042464, rtol=1e-5)
    assert s2.axes_manager[2].units == "1 / nm"

    fname1 = TEST_DATA_PATH_OLD / "16x16x5_STEM_BF_DF_preview.emi"
    s1 = hs.load(fname1)
    assert len(s1) == 2
    for s in s1:
        assert s.data.shape == (5, 16, 16)
        assert s.metadata.Acquisition_instrument.TEM.acquisition_mode == "STEM"
        np.testing.assert_allclose(s.axes_manager[0].scale, 1.0, rtol=1e-5)
        assert s.axes_manager[1].units == "nm"
        np.testing.assert_allclose(s.axes_manager[1].scale, 21.510044, rtol=1e-5)


def test_load_acquire():
    fname0 = TEST_DATA_PATH_OLD / "64x64_TEM_images_acquire.emi"
    s0 = hs.load(fname0)
    assert s0.axes_manager.signal_dimension == 2
    assert s0.metadata.Acquisition_instrument.TEM.acquisition_mode == "TEM"
    np.testing.assert_allclose(s0.axes_manager[0].scale, 6.281833, rtol=1e-5)
    assert s0.axes_manager[0].units == "nm"
    np.testing.assert_allclose(s0.axes_manager[1].scale, 6.281833, rtol=1e-5)
    assert s0.axes_manager[1].units == "nm"
    assert s0.axes_manager[0].name == "x"
    assert s0.axes_manager[1].name == "y"

    fname1 = TEST_DATA_PATH_OLD / "16x16_STEM_BF_DF_acquire.emi"
    s1 = hs.load(fname1)
    assert len(s1) == 2
    for s in s1:
        assert s.data.shape == (16, 16)
        assert s.metadata.Acquisition_instrument.TEM.acquisition_mode == "STEM"
        np.testing.assert_allclose(s.axes_manager[0].scale, 21.510044, rtol=1e-5)
        assert s.axes_manager[0].units == "nm"
        np.testing.assert_allclose(s.axes_manager[1].scale, 21.510044, rtol=1e-5)
        assert s.axes_manager[1].units == "nm"
        assert s.axes_manager[0].name == "x"
        assert s.axes_manager[1].name == "y"


@pytest.mark.parametrize("only_valid_data", (True, False))
def test_load_TotalNumberElements_ne_ValidNumberElements(only_valid_data):
    fname0 = TEST_DATA_PATH_OLD / "X - Au NP EELS_2.ser"
    s0 = hs.load(fname0, only_valid_data=only_valid_data)
    nav_shape = () if only_valid_data else (2,)
    assert s0.data.shape == nav_shape + (2048,)
    assert len(s0.axes_manager.navigation_axes) == len(nav_shape)
    np.testing.assert_allclose(s0.axes_manager[-1].offset, 2160, rtol=1e-5)
    np.testing.assert_allclose(s0.axes_manager[-1].scale, 0.2, rtol=1e-5)

    fname1 = TEST_DATA_PATH_OLD / "03_Scanning Preview.emi"
    s1 = hs.load(fname1, only_valid_data=only_valid_data)
    nav_shape = (5,) if only_valid_data else (200,)
    assert s1.data.shape == nav_shape + (128, 128)
    nav_axes = s1.axes_manager.navigation_axes
    sig_axes = s1.axes_manager.signal_axes
    assert len(nav_axes) == len(nav_shape)
    assert sig_axes[-1].size == sig_axes[1].size == 128
    np.testing.assert_allclose(sig_axes[0].scale, 0.38435, rtol=1e-5)
    np.testing.assert_allclose(sig_axes[1].scale, 0.38435, rtol=1e-5)


def test_read_STEM_TEM_mode():
    # TEM image
    fname0 = TEST_DATA_PATH_OLD / "64x64_TEM_images_acquire.emi"
    s0 = hs.load(fname0)
    assert s0.metadata.Acquisition_instrument.TEM.acquisition_mode == "TEM"
    # TEM diffraction
    fname1 = TEST_DATA_PATH_OLD / "64x64_diffraction_acquire.emi"
    s1 = hs.load(fname1)
    assert s1.metadata.Acquisition_instrument.TEM.acquisition_mode == "TEM"
    fname2 = TEST_DATA_PATH_OLD / "16x16_STEM_BF_DF_acquire.emi"
    # STEM diffraction
    s2 = hs.load(fname2)
    assert s2[0].metadata.Acquisition_instrument.TEM.acquisition_mode == "STEM"
    assert s2[1].metadata.Acquisition_instrument.TEM.acquisition_mode == "STEM"


def test_load_units_scale():
    # TEM image
    fname0 = TEST_DATA_PATH_OLD / "64x64_TEM_images_acquire.emi"
    s0 = hs.load(fname0)
    np.testing.assert_allclose(s0.axes_manager[0].scale, 6.28183, rtol=1e-5)
    assert s0.axes_manager[0].units == "nm"
    np.testing.assert_allclose(
        s0.metadata.Acquisition_instrument.TEM.magnification, 19500.0, rtol=1e-5
    )
    # TEM diffraction
    fname1 = TEST_DATA_PATH_OLD / "64x64_diffraction_acquire.emi"
    s1 = hs.load(fname1)
    np.testing.assert_allclose(s1.axes_manager[0].scale, 0.101571, rtol=1e-5)
    assert s1.axes_manager[0].units == "1 / nm"
    np.testing.assert_allclose(
        s1.metadata.Acquisition_instrument.TEM.camera_length, 490.0, rtol=1e-5
    )
    # STEM diffraction
    fname2 = TEST_DATA_PATH_OLD / "16x16_STEM_BF_DF_acquire.emi"
    s2 = hs.load(fname2)
    assert s2[0].axes_manager[0].units == "nm"
    np.testing.assert_allclose(s2[0].axes_manager[0].scale, 21.5100, rtol=1e-5)
    np.testing.assert_allclose(
        s2[0].metadata.Acquisition_instrument.TEM.magnification, 10000.0, rtol=1e-5
    )


def test_guess_units_from_mode():
    from rsciio.tia._api import (
        _guess_units_from_mode,
        convert_xml_to_dict,
        get_xml_info_from_emi,
    )

    fname0_emi = TEST_DATA_PATH_OLD / "64x64_TEM_images_acquire.emi"
    fname0_ser = TEST_DATA_PATH_OLD / "64x64_TEM_images_acquire_1.ser"
    objects = get_xml_info_from_emi(fname0_emi)
    header0, data0 = load_ser_file(fname0_ser)
    objects_dict = convert_xml_to_dict(objects[0])

    unit = _guess_units_from_mode(objects_dict, header0)
    assert unit == "meters"

    # objects is empty dictionary
    with pytest.warns(
        UserWarning, match="The navigation axes units could not be determined."
    ):
        unit = _guess_units_from_mode({}, header0)
    assert unit == "meters"


@pytest.mark.parametrize("stack_metadata", [True, False, 0])
def test_load_multisignal_stack(stack_metadata):
    fname0 = TEST_DATA_PATH_NEW / "16x16-line_profile_horizontal_5x128x128_EDS.emi"
    s = hs.load([fname0, fname0], stack=True, stack_metadata=stack_metadata)
    assert s[0].axes_manager.navigation_shape == (5, 2)
    assert s[0].axes_manager.signal_shape == (4000,)
    assert s[1].axes_manager.navigation_shape == (5, 2)
    assert s[1].axes_manager.signal_shape == (128, 128)

    om = s[0].original_metadata
    assert om.has_item("stack_elements") is (stack_metadata is True)


def test_load_multisignal_stack_mismatch():
    fname0 = TEST_DATA_PATH_NEW / "16x16-diffraction_imagel_5x5x256x256_EDS.emi"

    fname1 = TEST_DATA_PATH_NEW / "16x16-diffraction_imagel_5x5x256x256_EDS_copy.emi"
    with pytest.raises(ValueError) as cm:
        hs.load([fname0, fname1], stack=True)
        cm.match("The number of sub-signals per file does not match*")
    hs.load([fname0, fname1])


def test_date_time():
    fname0 = TEST_DATA_PATH_OLD / "64x64_TEM_images_acquire.emi"
    s = hs.load(fname0)
    assert s.metadata.General.date == "2016-02-21"
    assert s.metadata.General.time == "17:50:18"
    fname1 = TEST_DATA_PATH_OLD / "16x16-line_profile_horizontal_10x1024.emi"
    s = hs.load(fname1)
    assert s.metadata.General.date == "2016-02-22"
    assert s.metadata.General.time == "11:50:36"


def test_metadata_TEM():
    fname0 = TEST_DATA_PATH_OLD / "64x64_TEM_images_acquire.emi"
    s = hs.load(fname0)
    assert s.metadata.Acquisition_instrument.TEM.beam_energy == 200.0
    assert s.metadata.Acquisition_instrument.TEM.magnification == 19500.0
    assert (
        s.metadata.Acquisition_instrument.TEM.microscope
        == "Tecnai 200 kV D2267 SuperTwin"
    )
    np.testing.assert_allclose(
        s.metadata.Acquisition_instrument.TEM.Stage.tilt_alpha, 0.0, rtol=1e-5
    )


def test_metadata_STEM():
    fname0 = TEST_DATA_PATH_OLD / "16x16_STEM_BF_DF_acquire.emi"
    s = hs.load(fname0)[0]
    assert s.metadata.Acquisition_instrument.TEM.beam_energy == 200.0
    assert s.metadata.Acquisition_instrument.TEM.camera_length == 40.0
    assert s.metadata.Acquisition_instrument.TEM.magnification == 10000.0
    assert (
        s.metadata.Acquisition_instrument.TEM.microscope
        == "Tecnai 200 kV D2267 SuperTwin"
    )
    np.testing.assert_allclose(
        s.metadata.Acquisition_instrument.TEM.Stage.tilt_alpha, 0.0, rtol=1e-6
    )
    np.testing.assert_allclose(
        s.metadata.Acquisition_instrument.TEM.Stage.tilt_beta, 0.0, rtol=1e-6
    )
    np.testing.assert_allclose(
        s.metadata.Acquisition_instrument.TEM.Stage.x, -0.000158, rtol=1e-6
    )
    np.testing.assert_allclose(
        s.metadata.Acquisition_instrument.TEM.Stage.y, 1.9e-05, rtol=1e-6
    )
    np.testing.assert_allclose(
        s.metadata.Acquisition_instrument.TEM.Stage.z, 0.0, rtol=1e-6
    )


def test_metadata_diffraction():
    fname0 = TEST_DATA_PATH_OLD / "64x64_diffraction_acquire.emi"
    s = hs.load(fname0)
    assert s.metadata.Acquisition_instrument.TEM.beam_energy == 200.0
    assert s.metadata.Acquisition_instrument.TEM.camera_length == 490.0
    assert (
        s.metadata.Acquisition_instrument.TEM.microscope
        == "Tecnai 200 kV D2267 SuperTwin"
    )


def test_unsupported_extension():
    with pytest.raises(ValueError):
        file_reader("fname.unsupported_extension")