1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
|
# -*- coding: utf-8 -*-
# Copyright 2007-2023 The HyperSpy developers
#
# This file is part of RosettaSciIO.
#
# RosettaSciIO is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RosettaSciIO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with RosettaSciIO. If not, see <https://www.gnu.org/licenses/#GPL>.
import gc
from pathlib import Path
import dask
import numpy as np
import pytest
from packaging.version import Version
from rsciio.utils.tools import dummy_context_manager
hs = pytest.importorskip("hyperspy.api", reason="hyperspy not installed")
t = pytest.importorskip("traits.api", reason="traits not installed")
from hyperspy.misc.utils import DictionaryTreeBrowser # noqa: E402
from rsciio.tvips._api import ( # noqa: E402
TVIPS_RECORDER_FRAME_HEADER,
TVIPS_RECORDER_GENERAL_HEADER,
_find_auto_scan_start_stop,
_get_frame_record_dtype_from_signal,
_get_main_header_from_signal,
_guess_image_mode,
_guess_scan_index_grid,
_is_valid_first_tvips_file,
file_reader,
file_writer,
)
try:
WindowsError
except NameError:
WindowsError = None
TEST_DATA_PATH = Path(__file__).parent / "data" / "tvips"
@pytest.fixture()
def fake_metadata_diffraction():
metadata = {
"Acquisition_instrument": {
"TEM": {
"beam_current": 23,
"beam_energy": 200,
"camera_length": 80,
}
},
"General": {
"date": "1993-06-18",
"time": "12:34:56",
"time_zone": "CET",
},
}
return DictionaryTreeBrowser(metadata)
@pytest.fixture()
def fake_metadata_imaging():
metadata = {
"Acquisition_instrument": {
"TEM": {
"beam_current": 23,
"beam_energy": 200,
"magnification": 3000,
}
},
"General": {
"date": "1993-06-18",
"time": "12:34:56",
"time_zone": "CET",
},
}
return DictionaryTreeBrowser(metadata)
@pytest.fixture()
def fake_metadata_confused():
metadata = {
"Acquisition_instrument": {
"TEM": {
"beam_current": 23,
"beam_energy": 200,
"camera_length": 80,
"magnification": 3000,
}
},
"General": {
"date": "1993-06-18",
"time": "12:34:56",
"time_zone": "CET",
},
}
return DictionaryTreeBrowser(metadata)
@pytest.fixture()
def fake_metadatas(
fake_metadata_diffraction, fake_metadata_imaging, fake_metadata_confused
):
return {
"diffraction": fake_metadata_diffraction,
"imaging": fake_metadata_imaging,
"confused": fake_metadata_confused,
}
@pytest.fixture()
def fake_signal_3D():
fake_data = np.arange(120).reshape(4, 5, 6).astype(np.uint16)
fake_signal = hs.signals.Signal2D(fake_data)
fake_signal.axes_manager[0].scale_as_quantity = "1 nm"
fake_signal.axes_manager[1].scale_as_quantity = "1 1/nm"
fake_signal.axes_manager[2].scale_as_quantity = "1 1/nm"
return fake_signal
@pytest.fixture()
def fake_signal_4D():
fake_data = np.arange(360).reshape(3, 4, 5, 6).astype(np.uint32)
fake_signal = hs.signals.Signal2D(fake_data)
fake_signal.axes_manager[0].scale_as_quantity = "1 nm"
fake_signal.axes_manager[1].scale_as_quantity = "1 nm"
fake_signal.axes_manager[2].scale_as_quantity = "1 1/nm"
fake_signal.axes_manager[3].scale_as_quantity = "1 1/nm"
return fake_signal
@pytest.fixture()
def fake_signal_5D():
fake_data = np.arange(720).reshape(2, 3, 4, 5, 6).astype(np.uint64)
fake_signal = hs.signals.Signal2D(fake_data)
fake_signal.axes_manager[0].scale_as_quantity = "1 s"
fake_signal.axes_manager[1].scale_as_quantity = "1 nm"
fake_signal.axes_manager[2].scale_as_quantity = "1 nm"
fake_signal.axes_manager[3].scale_as_quantity = "1 1/nm"
fake_signal.axes_manager[4].scale_as_quantity = "1 1/nm"
return fake_signal
@pytest.fixture()
def fake_signals(fake_signal_3D, fake_signal_4D, fake_signal_5D):
return {
"fake_signal_3D": fake_signal_3D,
"fake_signal_4D": fake_signal_4D,
"fake_signal_5D": fake_signal_5D,
}
@pytest.mark.parametrize(
"unit, expected_mode",
[
("1/nm", 2),
("1/m", 2),
("nm", 1),
("m", 1),
(t.Undefined, None),
("foo", None),
("", None),
("s", None),
],
)
@pytest.mark.parametrize("sig", ["fake_signal_3D", "fake_signal_4D", "fake_signal_5D"])
def test_guess_image_mode(unit, expected_mode, sig, fake_signals):
signal = fake_signals[sig]
signal.axes_manager[-1].units = unit
mode = _guess_image_mode(signal._to_dictionary())
assert mode == expected_mode
@pytest.mark.parametrize(
"unit, expected_scale_factor, version, fheb",
[
("1/pm", 1e3, 2, 0),
("um", 1e3, 1, 60),
("foo", 1, 2, 12),
],
)
@pytest.mark.parametrize("sig", ["fake_signal_3D", "fake_signal_4D", "fake_signal_5D"])
@pytest.mark.parametrize("metadata", ["diffraction", "imaging", "confused", None])
def test_main_header_from_signal(
unit,
expected_scale_factor,
version,
fheb,
sig,
fake_signals,
metadata,
fake_metadatas,
):
signal = fake_signals[sig]
if metadata is not None:
signal._metadata = fake_metadatas[metadata]
signal.axes_manager[-1].units = unit
signal.axes_manager[-2].units = unit
original_scale_x = signal.axes_manager[-2].scale
if unit == "foo":
cm = pytest.warns(UserWarning)
else:
cm = dummy_context_manager()
with cm:
header = _get_main_header_from_signal(signal._to_dictionary(), version, fheb)
assert header["size"] == np.dtype(TVIPS_RECORDER_GENERAL_HEADER).itemsize
assert header["version"] == version
assert header["dimx"] == signal.axes_manager[-2].size
assert header["dimy"] == signal.axes_manager[-1].size
assert header["offsetx"] == 0
assert header["offsety"] == 0
assert header["pixelsize"] == original_scale_x * expected_scale_factor
assert (
header["frameheaderbytes"]
== np.dtype(TVIPS_RECORDER_FRAME_HEADER).itemsize + fheb
)
if metadata == "diffraction" and unit == "1/pm":
assert (
header["magtotal"]
== signal.metadata.Acquisition_instrument.TEM.camera_length
)
elif metadata == "imaging" and unit == "um":
assert (
header["magtotal"]
== signal.metadata.Acquisition_instrument.TEM.magnification
)
else:
assert header["magtotal"] == 0
if metadata is None:
assert header["ht"] == 0
else:
assert header["ht"] == signal.metadata.Acquisition_instrument.TEM.beam_energy
@pytest.mark.parametrize("extra_bytes", [0, 20])
@pytest.mark.parametrize("sig", ["fake_signal_3D", "fake_signal_4D", "fake_signal_5D"])
def test_get_frame_record_dtype(sig, fake_signals, extra_bytes):
signal = fake_signals[sig]
dt_fh = _get_frame_record_dtype_from_signal(
signal._to_dictionary(), extra_bytes=extra_bytes
)
dimx = signal.axes_manager[-2].size
dimy = signal.axes_manager[-1].size
total_size = (
np.dtype(TVIPS_RECORDER_FRAME_HEADER).itemsize
+ extra_bytes
+ dimx * dimy * signal.data.itemsize
)
assert dt_fh.itemsize == total_size
@pytest.mark.parametrize(
"filename",
[
pytest.param("foo_000.bla", marks=pytest.mark.xfail(raises=ValueError)),
pytest.param("foo_0.tvips", marks=pytest.mark.xfail(raises=ValueError)),
pytest.param("foo_001.tvips", marks=pytest.mark.xfail(raises=ValueError)),
pytest.param("foo_0000.TVIPS", marks=pytest.mark.xfail(raises=ValueError)),
("foo_000.tvips"),
("foo_000.TVIPS"),
],
)
def test_valid_tvips_file(filename):
isvalid = _is_valid_first_tvips_file(filename)
assert isvalid
@pytest.mark.parametrize(
"rotators, expected",
[
(np.array([0, 0, 1, 2, 3, 4, 5, 6, 0, 0]), (2, 7)),
(np.array([0, 1, 2, 3, 4, 5, 6, 0, 0]), (1, 6)),
(np.array([1, 2, 3, 4, 5, 6, 0, 0]), (0, 5)),
(np.array([0, 0, 1, 2, 3, 4, 5]), (2, 6)),
(np.array([0, 0, 1, 1, 3, 3, 4, 0]), (2, 6)),
(np.array([1, 2, 3, 4, 5]), (0, 4)),
(np.array([0, 0, 0, 0]), (None, None)),
],
)
def test_auto_scan_start_stop(rotators, expected):
start, stop = _find_auto_scan_start_stop(rotators)
assert start == expected[0]
assert stop == expected[1]
@pytest.mark.parametrize(
"rotators, startstop, expected",
[
(np.array([0, 0, 1, 2, 3, 4, 5, 6, 0, 0]), None, np.array([2, 3, 4, 5, 6, 7])),
(np.array([0, 1, 2, 3, 4, 5, 6, 0, 0]), (2, 5), np.array([2, 2, 3, 4, 5])),
(
np.array([1, 3, 3, 4, 5, 5, 9, 0, 0]),
None,
np.array([0, 0, 1, 3, 4, 5, 5, 5, 6]),
),
(
np.array([0, 0, 1, 3, 3, 4, 5, 5, 9, 0, 0]),
None,
np.array([2, 2, 3, 5, 6, 7, 7, 7, 8]),
),
],
)
def test_guess_scan_index_grid(rotators, startstop, expected):
if startstop is None:
startstop = _find_auto_scan_start_stop(rotators)
indices = _guess_scan_index_grid(rotators, startstop[0], startstop[1])
assert np.all(indices == expected)
def _dask_supports_assignment():
# direct assignment as follows is possible in newer versions (>2021.04.1) of dask,
# for backward compatibility we use workaround
return Version(dask.__version__) >= Version("2021.04.1")
@pytest.mark.parametrize(
"filename, kwargs",
[
(
TEST_DATA_PATH / "test_tvips_2233_000.tvips",
{
"scan_shape": "auto",
"scan_start_frame": 20,
"hysteresis": 1,
"rechunking": False,
},
),
(
TEST_DATA_PATH / "test_tvips_2345_000.tvips",
{
"scan_shape": (2, 3),
"scan_start_frame": 0,
"hysteresis": 0,
"rechunking": "auto",
},
),
(
TEST_DATA_PATH / "test_tvips_2345_split_000.tvips",
{
"scan_shape": (2, 2),
"scan_start_frame": 2,
"hysteresis": -1,
"rechunking": {0: 1, 1: 1, 2: None, 3: None},
},
),
],
)
@pytest.mark.parametrize("wsa", ["x", "y", None])
@pytest.mark.parametrize("lazy", [True, False])
def test_tvips_file_reader(filename, lazy, kwargs, wsa):
signal = hs.load(filename, lazy=lazy, **kwargs, winding_scan_axis=wsa)
signal_test = hs.load(filename, lazy=lazy)
scs = kwargs.get("scan_shape", "auto")
ssf = kwargs.get("scan_start_frame", 0)
hyst = kwargs.get("hysteresis", 0)
sigshape = signal_test.data.shape[-2:]
if scs == "auto":
scan_dim = int(np.sqrt(signal_test.data.shape[0]))
scs = (scan_dim, scan_dim)
ssf = 0
signal_test.data = signal_test.data[ssf:].reshape((*scs, *sigshape))
if not _dask_supports_assignment() and lazy:
signal_test.compute()
signal_test.data = signal_test.data.copy()
if wsa == "x":
signal_test.data[..., ::2, :, :, :] = signal_test.data[..., ::2, :, :, :][
..., :, ::-1, :, :
]
signal_test.data[..., ::2, :, :, :] = np.roll(
signal_test.data[..., ::2, :, :, :], hyst, axis=-3
)
elif wsa == "y":
signal_test.data[..., ::2, :, :] = signal_test.data[..., ::2, :, :][
..., ::-1, :, :, :
]
signal_test.data[..., ::2, :, :] = np.roll(
signal_test.data[..., ::2, :, :], hyst, axis=-4
)
assert np.allclose(signal_test.data, signal.data)
@pytest.mark.xfail(raises=ValueError)
def test_read_fail_version():
hs.load(TEST_DATA_PATH / "test_tvips_2345_split_000.tvips", scan_shape="auto")
@pytest.mark.xfail(raises=ValueError)
def test_read_fail_wind_axis():
hs.load(
TEST_DATA_PATH / "test_tvips_2345_split_000.tvips",
scan_shape=(2, 3),
winding_scan_axis="z",
)
@pytest.mark.xfail(raises=ValueError)
def test_read_fail_scan_shape():
hs.load(TEST_DATA_PATH / "test_tvips_2345_split_000.tvips", scan_shape=(3, 3))
@pytest.mark.xfail(raises=ValueError)
def test_write_fail_signal_type(tmp_path):
fake_signal = hs.signals.BaseSignal(np.zeros((1, 2, 3, 4)))
fake_signal.save(tmp_path / "test_000.tvips")
@pytest.mark.parametrize(
"sig, meta, max_file_size, fheb",
[
("fake_signal_3D", "diffraction", None, 0),
("fake_signal_4D", "imaging", None, 0),
("fake_signal_5D", "diffraction", None, 0),
("fake_signal_4D", "diffraction", 100, 0),
("fake_signal_5D", "imaging", 100, 20),
("fake_signal_5D", None, 700, 10),
],
)
@pytest.mark.parametrize("lazy", [True, False])
def test_file_writer(
sig, meta, max_file_size, fheb, fake_signals, fake_metadatas, lazy, tmp_path
):
signal = fake_signals[sig]
if lazy:
signal = signal.as_lazy()
if meta is not None:
metadata = fake_metadatas[meta]
signal.metadata.add_dictionary(metadata.as_dictionary())
metadata = signal.metadata
filepath = tmp_path / "test_tvips_save_000.tvips"
scan_shape = signal.axes_manager.navigation_shape
if max_file_size is not None and max_file_size < 500:
cm = pytest.warns(UserWarning)
else:
cm = dummy_context_manager()
with cm:
file_writer(
filepath,
signal._to_dictionary(),
max_file_size=max_file_size,
frame_header_extra_bytes=fheb,
)
if max_file_size is None:
assert len(list(tmp_path.iterdir())) == 1
else:
assert len(list(tmp_path.iterdir())) >= 1
filepath_load = str(tmp_path / "test_tvips_save_000.tvips")
dtc = file_reader(filepath_load, scan_shape=scan_shape[::-1], lazy=False)[0]
np.testing.assert_allclose(signal.data, dtc["data"])
assert signal.data.dtype == dtc["data"].dtype
if metadata and meta is not None:
assert dtc["metadata"]["General"]["date"] == metadata.General.date
assert dtc["metadata"]["General"]["time"] == metadata.General.time
assert (
dtc["metadata"]["Acquisition_instrument"]["TEM"]["beam_energy"]
== metadata.Acquisition_instrument.TEM.beam_energy
)
assert (
dtc["metadata"]["Acquisition_instrument"]["TEM"]["beam_current"]
== metadata.Acquisition_instrument.TEM.beam_current
)
gc.collect()
@pytest.mark.xfail(raises=ValueError)
def test_file_writer_fail(tmp_path):
signal = hs.signals.Signal1D(np.array([1, 2, 3]))
file_writer(str(tmp_path / "test.tvips"), signal._to_dictionary())
|